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Abstract— We present an approach to improve the per-
formance of general purpose inverse kinematics (IK) solvers
which are based on iterative gradient descent algorithms. The
proposed IK-Map is used to represent the whole workspace of
the manipulator through a voxelized data structure, similar to
existing approaches, e.g. reachability or capability maps. We
extend the reachability map approach by additionally storing
reference IK solutions, which can be used to seed iterative IK
solvers during online processing. This information can be used
to limit the effect of well-known issues with local optimization
schemes based on gradient decent methods, such as local
minima or constraint violation. We evaluate the approach with
a simulated model of ARMAR-4, showing that classical generic
Jacobian-based IK solvers can be improved in terms of success
rate, performance, and quality of the resulting IK solutions.

I. INTRODUCTION

Solving the inverse kinematics (IK) problem is an essen-
tial capability that is needed for almost every application
in the context of robotic manipulation and locomotion. A
large variety of components, such as modules related to
grasping, motion generation or footstep planning, rely on the
possibility to compute joint angle configurations to achieve
a specific goal, e.g. a Cartesian pose to be reached by an
end effector. In many cases additional constraints, such as
self-collision avoidance or pose quality requests, must be
considered, which affect the computation complexity. Finally,
multiple objectives may be combined in order to generate
whole-body postures, e.g. for a humanoid robot.

Several approaches can be used for solving the inverse
kinematics problem. Analytic algorithms are fast but they
have to be developed specifically for the manipulator. Further
it may be difficult to adapt them according to different sets
of constraints. Hence numerical approaches are often used to
create whole body postures while considering arbitrary con-
straints. Such methods, e.g. Jacobian Transpose [1], Damped
Least Square [2] or hierarchical formalisms [3], [4], [5],
usually try to iteratively move the end effector towards the
goal until a sufficient accuracy is reached. Due to the iterative
nature of the approaches, issues arising from singularities and
local minima have to be addressed.

Iterative methods strongly rely on the initial configuration
(seed) that is used to start the IK search. The success rate
usually decreases with increasing distance to the starting
pose, even when IK solutions exist. Stochastic approaches,
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Fig. 1. The IK-Map contains reachability data together with reference IK
solutions that can be used to support iterative IK solvers. Several reference
IK solutions are depicted for a 10 DoF kinematic chain the of the humanoid
robot ARMAR-4 covering 2 hip and 8 arm joints.

e.g. Monte Carlo methods, can be used to generate random
seeds when the initial process gets trapped in a local minima.
Although the success rate increases with such approaches,
the results are not deterministic. Further, unnatural postures
may be generated which is undesirable e.g. in human-robot
interaction tasks.

In this work we address the problem of seeding IK solvers
in order to be able to generate whole-body postures for the
whole workspace of the robot while considering multiple
constraints in an efficient way. Therefore, we present the
IK–Map approach which provides a representation of the
robot’s 6D workspace, filled with reference configurations
and quality information. In contrast to existing workspace
reachability and capability maps [6], [7], [8], the IK–Map can
be used to directly support IK solvers by providing potential
starting configurations (seeds) that can be explored by the
IK search.

Although such reference configurations don’t give a guar-
antee that a solution can be found by an iterative IK solver, in
particular when varying constraints such as collisions with a
changing environment have to be considered, efficiency and
success rate can be considerably improved, as we evaluated
in this work.



II. RELATED WORK

Inverse Kinematics for redundant manipulators is a well
investigated topic. In literature, several surveys on IK compu-
tation give a good overview on available approaches (see e.g.
[1] or [9]). Beside analytical methods (e.g. [10], [11]), which
are capable of computing closed-form solutions, iterative
methods are widely used since they can be realized in a
generic and robot-independent way. Most approaches rely
on approximating an inverse of the robot’s Jacobi matrix.
Several methods, such as the Jacobian Transpose, Damped
Least Squares (DLS), or Selectively Damped Least Squares
(SDLS) and several extensions are known [12], [2], [13].
More advanced IK approaches are capable to consider mul-
tiple equality or inequality constraints which can be ordered
in a hierarchy [4], [5], [14]. In [15] pre-designed reference
postures are used to support the online generation of whole-
body IK solutions. The style base inverse kinematics system
[16] is based on a learned probability model of human
poses and allows real-time IK solving while reproducing
the posture characteristics of an observed human. The IK-
fast algorithm [7] can be used for kinematic chains with
up to 6 DoF. Kinematic structures with more degrees of
freedom can be handled by selecting a subset of active joints,
while fixating the remaining ones. Although the efficiency is
impressive, the usage for larger kinematic chains is limited.

In [17] a method for generating workspace densities
for discretely actuated robots is developed. Due to the
discretized configuration space, a tree-based structure can
be built and refined during online processing. In order to
cope with high dimensional configuration spaces, appropriate
discretization parameters have to be chosen, which may
result in approximation artefacts. The resulting workspace
densities are used to efficiently solve IK-related queries.
The concept of building workspace densities is refined in
[18], in order to generate a probabilistic measure of the
accuracy of the reachable workspace. Similar to the approach
of [19] the workspace quality is related to the number of
configurations that map to a specific area in workspace,
which results in misleading representations of singularities (a
large number of configurations map to the same area which
results in a high quality value, whereas singularities should
be avoided). Further, the discretization of the configuration
space introduces approximation errors, which could decrease
the quality of the results.

Workspace discretization techniques can be used to build
a representation of the robot’s reachable workspace [6], [8],
[20]. These representations are generated offline and usually
quality information is stored that encode the capability of the
robot’s end effector to reach a Cartesian target. The quality
information may cover reachability [6], manipulability [19]
or stability [21] that may be achieved at the corresponding
pose. Usually each discretized 3D or 6D workspace grid
cell holds a single value that describes the maximal or
average quality value that is achievable inside the extends
of the cell. Although this information already gives a good
hint of where to search for solutions, it is not guaranteed

that a corresponding IK solution can be found, in particular
when iterative IK solvers are used. Since such IK algorithms
strongly rely on the initial seed, an IK query may fail or
result in a low-quality result even when good solutions exist.
Therefore we present the IK–Map approach, which is used to
additionally store reference IK solutions in each workspace
cell in order to serve suitable seeds for iterative IK methods
(see Fig.1). As we will show, this increases the success rate
of iterative constrained IK search as well as it reduces the
time needed to search IK solutions.

III. IK–MAP

Initially, the reachable 6D workspace of the robot’s manip-
ulator is discretized and filled by an offline procedure. During
online processing, this data structure can be queried in order
to select reachable targets or to get supporting information
that is used to improve the IK solvers for a specific target.

A. Buildup

The IK-Maps are generated for a specific kinematic chain
and an end effector of the robot. The resulting discretized
representation of the reachable 6D workspace is stored as
a tree structure, where each node represents a bounding
volume in 6D pose space. Similar to an octree in 3 di-
mensional space, each 6D cell can be seen as hyperoctant
that is decomposed into 26 children, whereas each of the 6
dimensions is bisected. This bisection is performed until the
extends of the grid cell falls below a discretization threshold.
Compared to array representations which are usually used for
reachability approaches, this tree structure has the advantage
that the number of leaf cells is limited to the reachable area.
This is critical, since leaf cells hold much more data in our
case: instead of storing just one quality value (e.g. 1 byte), a
cell additionally contains a reference configuration which is
stored with at least 4 ∗ ndof bytes (assuming that a floating
point value is represented with 4 bytes).

Further, the data structures are created only on write access
(i.e. only when a pose is added to the tree), which means
that unreachable poses are not represented in order to allow
a memory efficient storage. Similar to related works [19],
[20], we use a randomized approach for building up the data
structures. This has the advantage that a sufficient representa-
tion can be built quickly, while iterative refining, even during
online processing, is still possible. The generation advances
towards a complete coverage as time increases. However, the
approach initially leads to an incomplete representation due
to the random component. This can be overcome by post
processing steps, e.g. Gaussian smoothing or by validating
the non-reachability of cells with IK-related methods, similar
to [8].

1) Parameters: A pose in the workspace is represented
by a 6-dimensional vector, which consists of three entries
describing the position followed by three entries that de-
scribe the orientation of the pose. Hence, the elements of
the workspace tree consist of 6-dimensional vectors which
describe the center of the grid cells which may be further



refined by the children. In the following we derive the height
of the tree, whereas all leaf cells have the same extend.

The size of the reachable area lw ∈ R3 can be derived from
the maximum extends of the workspace w−, w+ ∈ R3:

lw = w+
e − w−

e . (1)

Together with the position and orientation discretization
parameters dp, do ∈ R3, the height of the tree k can be
calculated as follows:

First, the number of levels for the position part of the tree
p ∈ R3 are calculated with
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tree o ∈ R3 are calculated with
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Finally, the height k ∈ N is determined as

k = max{p1, p2, p3, o1, o2, o3}. (4)

2) Generation: The map is generated as shown in Al-
gorithm 1. The IK-Map I is initialized with the kinematic
description of the manipulator M. Then, I is continuously
updated with random samples. For each randomly sampled
configuration c ∈ Rndof , the quality q ∈ R and the
workspace pose p ∈ R6 of the end effector is computed.
If the grid cell that corresponds to p has not been set
or, if the corresponding quality value is lower than the
current q, the entry is updated, whereas c and q are stored
within the data structure. The quality q is evaluated by using
the extended manipulability measure as proposed in [22],
but other methods for determining a quality value for a
given configuration can be incorporated as well. It is also
possible to store multiple quality measures to perform a task
dependent selection during online processing. An exemplary
map for a 10 DoF kinematic chain of ARMAR-4 [23] can
be seen in Fig. 2. The figure depicts the best achievable
orientation at each 3D grid position whereas the orientation
of the end effector is visualized by arrows. The color encodes
the stored quality value (blue: low, red:high).

Fig. 2. An IK–Map for the 10 DoF kinematic chain of ARMAR-4 covering
2 hip and 8 arm joints. The manipulability is encoded by color ranging from
blue (low values) to red (high values).

Algorithm 1 BuildIkMap
Require: QualityMeasure Q, Manipulator M

1: I ← InitializeIkMap(M)
2: while (!Timeout()) do
3: c← RandomConfiguration()
4: q ← Q.computeQuality(c)
5: p←M.forwardKinematics(c)
6: if (!I.hasEntry(p) || I.getQuality(p) < q) then
7: I.addPose(p, c, q)
8: return I

B. Query

During online processing, several components, such as
task planners, motion generation modules or footstep plan-
ners, may request the quality that can be achieved at a
given pose. In addition, IK solvers might be queried in
order to generate potential configurations which place the
end effector at a requested pose in workspace. A query to the
IK–Map data structure can be processed with O(k), whereas
k is the height of the tree. The tree height depends on the
extends of the workspace and the discretization parameters
(see Section III-A.1).

The IK–Map is used in Algorithm 2 to support the IK
query by using the stored reference configuration that is
associated with the workspace pose p. Therefore the IK–
Map tree structure is queried in order to retrieve the grid cell
v in which p is located. The corresponding configuration
qseed is used as a starting configuration for the iterative
IK solver IK. Since the reference value qseed results in an
end effector pose M.forwardKinematics(qseed) that lies
within the extends of v, the upper bound for the position
displacement that the IK solver needs to address is dp, while



the orientational displacement is at maximum do. The result
is checked against self collisions to ensure collision-free IK
solutions. This step is necessary since although it is ensured
that the reference configuration qseed does not result in self-
collisions, the resulting configuration q might be in collision
with the robot or the environment.

Algorithm 2 ComputeIK(p)
Require: IKMap I, IK-Solver IK

1: v← I.getGridCell(p)
2: qseed ← v.getReferenceConfig()
3: IK.setSeed(qseed)
4: q← IK.solve(p)
5: if (!CollisionFree(q)) then
6: return NULL
7: return q

Since the IK query may fail, even when seeding with a
promising reference, the IK search can be extended as shown
in Algorithm 3. When the direct IK call fails, the reference
configurations of all 36 − 1 neighboring cells of p are used
to seed the IK solver. Hence, a large set of promising seeds
are available which all represent configurations of the end
effector that lie in the surrounding of p. Form these poses the
IK solver has a good chance to find a solution without getting
stuck in local minima or being affected by singularities.
The method getNextNeighbor of Algorithm 3 starts with
returning direct neighbors of the cell that corresponds to p.
If these neighbors do not result in an IK solution, higher
grade neighbors are generated.

Algorithm 3 ComputeIKExtended(p)
Require: IKMap I, IK-Solver IK

1: q← ComputeIK(p)
2: if (q) then
3: return q

4: while (!TimeOut()&& !MaxCellsProcessed()) do
5: pneighbor ← getNextNeighbor(p)
6: v← I.getGridCell(pneighbor)
7: qseed ← v.getReferenceConfig()
8: IK.setSeed(qseed)
9: q← IK.solve(p)

10: if (q&&CollisionFree(q)) then
11: return q

12: return NULL

IV. EVALUATION

We evaluate the IK–Map approach with a kinematically
simulated model of the humanoid robot ARMAR-4 with
the robotics simulation toolbox Simox1 [24]. The kinematic
chain used in the following evaluation setups covers 2 hip
and 8 arm joints.

1http://gitlab.com/Simox

Fig. 3. The effect of different discretization parameters on the memory
consumption. The solid lines show the measured results of the proposed
IK-Map approach, i.e the data is stored in a tree structure. For comparison,
the minimal memory consumption that would be needed when storing the
data in an array-like structure is shown with dashed lines.

A. Memory Consumption

Although systems tend to be equipped with large amounts
of memory, the memory consumption of the IK-Map data
structure can be challenging. Compared to related ap-
proaches, where only one quality value is stored in each
grid cell, the IK-Map approach additionally stores a reference
configuration in each cell. Hence, the memory consumption
per cell, including 1 byte for the quality value, increases from
1 to 1+(4∗ndof ) byte, whereas ndof is the number of DoF
and each joint value is stored as 4 byte, representing a float-
ing point value. Depending on the discretization parameters,
the resulting memory assignment can be large. In Fig. 3, the
effects of different translational (from 50 to 300 mm) and
rotational (0.2, 0.3 and 0.4 radian) discretization parameters
are shown.

The figure shows results from data structures that have
been built from 100 million random samples of the 10
DoF kinematic chain covering 2 torso and 8 arm joints of
ARMAR-4. The generation of such data structures takes
about 9 hours on a standard Linux PC, utilizing all 8 cores.
In addition to the measured memory usage of the IK–Map
approach (solid lines), the minimal memory consumption for
array-like data structures is depicted with dashed lines. The
results show, that the discretization parameters influence the
memory consumption directly and that storing the data in
tree-like data structures is more memory efficient compared
to array-based data management.

B. Performance and Quality

A 10 DoF kinematic chain covering torso and one arm
of ARMAR-4 was used to analyze the gain in performance
and quality when using the IK–Map approach. For evaluation
purposes the same 10000 IK queries are processed by four
different approaches:

1) NoMap1: Iterative IK solver similar to the approaches



of [3], [1] that is seeded with one standard configura-
tion.

2) NoMap100: Iterative IK solver that is seeded with up
to 100 random configurations.

3) IK–Map1: IK–Map approach, without considering
neighbors (Algorithm 2).

4) IK–Map100: IK–Map approach that seeds the IK solver
with up to 100 reference solutions of the neighboring
cells (Algorithm 3).

To ensure that all 10000 IK targets are reachable, joint
configurations are randomly generated and forward kinemat-
ics is used to build the IK targets in workspace. The full 6D
pose has to be calculated by the different approaches.

The IK–Map used in this evaluation has been built with
discretization parameters of 150 mm (translational part) and
0.3 radian (rotational part). The data structure was calculated
by the use of 100 million random samples resulting in a map
size of 1.29 GB.

As shown in Table I, the use of a standard iterative
IK solver [3], [1] that always starts from a fixed initial
configuration (column 1) results in a bad success rate, since
the distance from the initial seed to the target pose is large
(681 mm and 2.61 radian on average) resulting in bad
performance of the gradient descent approach. Using the IK–
Map approach for seeding the IK solver drastically reduces
the distance that the IK algorithm needs to overcome to reach
the target pose (90 mm and 0.2 radian on average). Hence,
the success rate is much higher (98.9%), the performance is
better (1.1 ms per IK query) and the resulting manipulability
value is higher (an average value of 0.106 compared to
0.067).

Both approaches take advantage from using multiple start-
ing seeds (column 2: random seeds, column 4: considering
neighboring cells with the IK–Map approach). By using up
to 100 seeds the success rate of the IK query could be
increased to up to nearly 100%. Again, the use of the IK–
Map approach outperforms the standard approach in terms
of performance (4.5 ms versus 1.2 ms on average per IK
query) and manipulability of the IK results (from 0.069 to
0.106 on average). The effect of having results with better
manipulability can be seen in Fig. 4. On the left, an IK
solution, generated by the iterative IK approach (2) is shown.
The right side shows a solution of the IK–Map approach (4)
that resulted in a configuration with higher manipulability.

C. Parameter Evaluation

The effect of the different discretization parameters on the
success rate can be seen in Fig. 5. The first two columns
show the average success rate of the NoMap1 and NoMap100

approaches. The following columns depict how different
parametrization of the cell size in translational (50, 150 and
300 mm) and rotational (0.2, 0.3, and 0.4 radian) dimensions
influence the achievable success rate of the IK solver. The
IK–Map1 and IK–Map100 are shown in blue and red, respec-
tively. It can be seen that there is no effect of different cell
sizes for the IK–Map100 approach; all IK querys have been

Fig. 4. Exemplary IK solutions. Left: The iterative IK solver resulted
in a configuration with low manipulability. Right: The IK–Map approach
generated a solution with better manipulability.

TABLE I
COMPARISON BETWEEN STANDARD ITERATIVE IK CALCULATIONS AND

THE IK–Map APPROACH.

(1) (2) (3) (4)
NoMap1 NoMap∗100 IK–Map1 IK–Map∗∗100

Success rate 25.64% 99.97% 98.93% 100.00%
Avg. manip. 0.0674 0.0693 0.1059 0.1055
SD. manip. 0.0368 0.0369 0.0368 0.0370
Avg. time IK [ms] 1.6 4.5 1.1 1.2
Avg. dist. pos. [mm] 681.12 662.83 90.36 90.31
SD. pos. [mm] 246.86 269.30 35.47 35.45
Avg. dist. rot. [rad] 2.61 2.39 0.18 0.19
SD. rot. [rad] 0.86 0.95 0.08 0.08

∗ In case of failure, the IK solver runs up to 100 times with a randomly
sampled seed.

∗∗ The IK–Map solver searches up to 100 neighboring cells for promising
seeds.

SD Standard deviation

answered successfully. Further, the performance of the IK–
Map1 algorithm is weak for small cell sizes. This caused by
the fact that due to the randomized buildup approach several
cells haven’t been filled during the offline procedure. Hence,
the IK solver was not be able to find a suitable seed since no
neighbors were queried in this approach. This artefact can
be avoided through longer buildup procedures, possibly in
addition with post processing (e.g. smoothing) operations.

In Fig. 6 the effect of parameter selection on the IK
query time is depicted. In this evaluation, only successful IK
querys are taken into account. The first two columns show
the average IK query time of the NoMap1 and NoMap100

approaches. The results of the IK–Map1 and IK–Map100 are
shown in the following columns in blue and red. It can be
seen that a larger cell size results in an increased runtime
of the IK algorithm which is caused by the larger distances
that the iterative IK approach needs to overcome to find a
solution.

V. CONCLUSION

In this work, the IK–Map approach has been introduced
in order to improve inverse kinematics computation. IK–
Maps are an extension of the reachability map approach
that allows to additionally store reference IK solutions in
the workspace data structure. This data helps to speedup



Fig. 5. The effect of the discretization parameters on the IK success rate.

Fig. 6. The effect of different discretization parameters on the IK query
time (only successful querys are considered).

iterative IK solvers which are based on gradient descent
approaches and hence need a seed to start the IK search. The
approach was evaluated with a 10 DoF kinematic chain of the
humanoid robot ARMAR-4 by solving a large number of IK
queries. The memory consumption as well as the influence
of parameter selection was investigated. We showed that the
performance as well as the success rate of iterative IK solvers
could be increased by using the IK–Map approach. Further,
it has been evaluated that the quality of the IK results can
be improved in terms of manipulability.

Nevertheless, several issues could be addressed in order to
improve the proposed approach. First, the offline generation
of the data could be improved to receive a better represen-
tation of the workspace. With hybrid approaches, the results
of the map generation can be post processed in order to
counteract the effects of random sampling. In addition, more
advanced IK solving algorithms can be used with the IK–
Map approach to tackle more challenging IK problems, e.g.
by considering the stability of the robot or interaction forces
with the environment.
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A. Kargov, T. Werner, and V. Bartenbach, “ARMAR-4: A 63 DOF
Torque Controlled Humanoid Robot,” in IEEE/RAS International
Conference on Humanoid Robots (Humanoids), 2013, pp. 390–396.
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