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Abstract— We present an approach for determining suit-
able locations for human-robot interaction tasks. Therefore,
we introduce the task specific Interaction Workspace as a
representation of the workspace that can be accessed by both
agents, i.e. the robot and the human. We show how the
Interaction Workspace can be efficiently determined for a
specific situation by making use of precomputed workspace
representations of robot and human. By considering several
quality measures related to dexterity and comfort, the Interac-
tion Workspace provides valuable information about potential
targets for human robot interaction (e.g. for object hand-
over tasks). We evaluate the online performance of building
appropriate data structures and show how the approach can
be applied in a realistic hand-over use case with the humanoid
robot ARMAR-III.

I. INTRODUCTION

Robots which collaborate with humans in shared envi-
ronments need to be equipped with planning components
that consider the capabilities of the human. Therefore, a
representation of the current state of the human together
with an estimation of the human’s capabilities is essential.
The state of the human is usually represented by his or her
position and configuration, while the representation of the
capabilities is task dependent.

In this work, we are investigating human-robot interaction
processes, such as hand-over tasks, and how a beneficial
representation of the human capabilities in terms of reaching
and comfort can be used to support the autonomous planning
of hand-over locations. Instead of using heuristics, which
can be used to solve simple setups (e.g. the robot is located
directly in front of the human), our approach allows for fully
autonomous computation of suitable hand-over poses, even
in complex and constrained environments. The approach
incorporates a pre-computed representation of the reachable
workspace of the human and uses this information in an
online manner to determine the shared Interaction Workspace
of robot and human. The Interaction Workspace can take into
account online information, e.g. the effort that is needed
by the human to reach a specific location from his or her
current state, which allows to search for optimal interaction
targets. Due to the efficient generation of the Interaction
Workspace, the approach is suitable for planning online
human-robot interaction tasks, such as handing over objects
from the robot to a human collaborator. We evaluate the
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Fig. 1. ARMAR-III passing an object to a human in simulation. The hand-
over target pose is determined by querying the Interaction Workspace which
is computed by intersecting the workspaces of robot and human.

approach in simulation as well as in a maintenance scenario
in which a human technician is assisted by the humanoid
robot ARMAR-III [1].

II. RELATED WORK

A. Work Space Analysis in Robotics

Analyzing the workspace of a manipulator is a useful step
for many applications in the context of robotic manipulation.
Especially for tasks like grasp and motion planning it is
important to have a representation of the manipulator’s
capabilities within specific regions in Cartesian space. These
capabilities can be represented by reachability information
[2] or more sophisticated quality distributions defined in
workspace.

Zacharias et al. [3] introduces a workspace representation
that stores directional structure information to describe a
manipulator’s capability to reach certain workspace regions
from different directions.

In earlier work, we proposed a 6D voxelized data structure
to represent the workspace of a manipulator [4]. Each



voxel holds a manipulability reference value describing the
manipulator’s local dexterity.

Porges et al. [5] analyzes different approaches to create
such 6D voxelized data structures. Furthermore an overview
of different methods for evaluating voxel quality is given.

B. Representation of the Human Workspace

Performing human-aware interactions is a key ability for
robots that have to act in human-centered environments.
Especially in the context of planning everyday interactions
like handover tasks there exist several works that analyze
the human workspace to account for various human-oriented
constraints and preferences such as comfort and safety. In
order to satisfy human-oriented constraints (e.g. comfort of
arm postures) one can define quantitative quality measures
expressing the quality of e.g. arm postures regarding respec-
tive constraints.

This can be done by using a cost map approach, as
proposed in [6], [7]. In these works, the human workspace
is represented by a 3D grid and analyzed based on various
cost functions regarding human’s comfort, safety and field of
view. Grid cells with minimal costs are assumed to be poten-
tially good handover positions. Robot motions are planned
via a path search in human’s workspace [6] or robot’s
configuration space [7]. Paths that minimize the overall cost
of the cells they contain, should result in potentially safe and
legible robot motions.

Other works use an intuitive approach to account for
human-oriented constraints [8], [9], [10]. In these works, the
human workspace is represented by a set of 3D grids which
are referred to as “mightability maps”. Each mightability
map stores binary reachability and visibility information of
the human. Candidate handover positions are determined
through set operations on the robot’s and human’s mighta-
bility maps.

One common point across the aforementioned related
work is that workspaces are represented by 3D grids. For
planning handover tasks with smaller objects, orientations
can be disregarded, hence this approach is sufficient. How-
ever, in general the position where the human grasps an
object depends heavily from its orientation and therefore
from the orientation of the robot’s hand holding the object.
To consider not only positions, but also orientations, we use
in this paper 6D voxelized data structures (as described in
[4]) to represent the workspace of the human and the robot.

III. APPROACH

An overview of the proposed approach for representing the
human-robot Interaction Workspace is depicted in Fig. 2. The
workspace of the human is created for the human reference
model of the Master Motor Map (MMM) framework [11],
[12]. Since the MMM framework is capable to adapting the
size of the MMM model, this representation can either be
created for a formerly known subject height, or the model
together with the workspace representation can be adapted
online according to an estimated subject size. In addition,
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Fig. 2. The Interaction Workspace takes into account the human’s and the
robot’s workspace representation together with additional task constraints.
Based on this data structure, potential interaction targets can be generated
which have to be verified by an inverse kinematics solver. The resulting
interaction configuration can be executed by the robot.

the robot’s workspace and grasping information are created
during the offline step with the approaches of [4] and [13].

During online processing, the information is used to create
an Interaction Workspace that can be queried for potential in-
teraction targets. The IK solver finally creates an Interaction
Configuration.

Fig. 3. Visualization of a cut through the 6D workspaces of the human
model’s left arm (7 DoF). (a) Quality distribution regarding local dexterity of
the human arm (red: high dexterity, blue: low dexterity). (b) Quality distri-
bution regarding energy consumption of arm postures (red: low effort, blue:
high effort). (c) Exemplary combination of both workspace representations.

A. Human Workspace Analysis

In this work the capabilities of the human are represented
by a grid of voxels in 6D pose space, where a pose is
described by (t, R), with t ∈ R3 the translational and
R ∈ SO(3) the rotational part. Each voxel is associated with
a quality value q ∈ [0, 1] indicating the human arm’s local
dexterity. Determining the human arm’s local dexterity is
based on manipulability anaysis described in [14]. Fig. 3 (a)
shows a quality distribution representing the local dexterity
of the human left arm (7 DoF), whereas the different quality
values are encoded by color.

For the offline computation of the human’s workspace we
use a sampling-based approach. A large set of random arm
configurations is generated, for every configuration the pose
of the Tool Center Point (TCP) is computed via forward
kinematics and the voxel that corresponds to the TCP pose
is evaluated regarding the dexterity of the human arm. Since
the workspace grid is linked to the human model’s shoulder,
it adjusts its position and orientation when the human is
moving (e.g. bending over or crouching).



Fig. 4. The robot is supposed to hand-over a mallet to a person lying on the ground. (a) Interaction Workspace. (b) Cut through the Interaction Workspace.
(c) An interaction configuration.

B. An Online Quality Measure for Human Postures

An offline analysis of the human’s capabilities (Sec. III-
A) provides valuable information for planning interaction
tasks. However, since Human-Robot Interaction (especially
in the context of object hand-over) is a highly dynamic
process, we have to consider the human’s current state to
account for human-oriented constraints like comfort and
safety. Therefore, we introduce a quality measure to evaluate
potential interaction targets in an online manner considering
the human model’s current state.

For a given potential interaction target (i.e. a 6D pose) we
obtain the corresponding target configuration θtarget of the
human arm via inverse kinematics. Furthermore, we capture
the current gaze direction and posture of the human model
to account for visibility and safety constraints.

In the following, we introduce several costs functions,
which are combined to evaluate a quality value for a given
interaction target in workspace.

The first two cost functions are related to the travel cost
and spatial error of Rosenbaum et al.’s posture-based motion
planning model [15]. However, we do not restrict potential
target poses to be on the sagittal or horizontal plane only
and we assume optimal movement times for each joint of
the human arm. Potential interaction targets, that minimize
the angular and spatial displacement costs, are assumed to be
promising in terms of human arm comfort. Besides human
arm comfort we also consider the human’s current gaze
direction, safety constraints (i.e. collision free interactions)
and the effort of human arm postures.

a) Joint space travel: For a given target configuration
of the human arm a cost based on the angular displacement
of all joints is defined by

cjoint =
n∑

i=1

αi · (θcurrent,i − θtarget,i)2 (1)

where αi ∈ R+ is a weight applied to the ith joint,
θcurrent,i is the current angle and θtarget,i is the target angle
of the ith joint.

b) Work space travel: For a given interaction target, a
cost based on the spatial displacement of the human arm’s
TCP is defined by

cspatial = ‖pcurrent − ptarget‖2 (2)

where pcurrent ∈ R3 is the current position and ptarget ∈
R3 is the target position of the human arm’s TCP.

c) Visibility: The visibility cost cvisibility ∈ [0,∞]
is based on the angle between the human’s current gaze
direction and the given potential interaction target. The
greater the angle, the higher the cost. The human’s gaze
direction is approximated by a vector shown in Fig. 1 (red
arrow).

If the gaze of the human cannot be estimated by the robot’s
perception system, this quality value can either be omitted,
or a standard gaze direction can be assumed which e.g. can
be derived from the orientation of the upper body.

d) Collision: The safety cost csafety ∈ [0,∞] is based
on the distance between the target TCP position and obstacles
(e.g. own body). The shorter the distance, the higher the cost.
The cost evaluates to infinity on collision and to zero after
a maximal distance.

e) Effort: The effort cost ceffort ∈ [0,∞] is based on
the energy consumption of human arm postures. The higher
the effort, the higher the cost. Determining the effort of arm
postures is accomplished by analyzing the overall torque of
all joints of the human model’s arm. Energy consumption
increases as the overall torque of all joints increases. Arm
postures that minimize the total torque of all joints are
assumed to be good candidates for comfortable arm postures.
This point of view of relating energy consumption of arm
postures to human comfort is based on Katayama’s minimum
joint torque index [16]. Fig. 3 (b) shows a quality distribution
representing the energy consumption of arm postures for a
standing human model.

f) Quality representation: For further processing, we
transfer the costs to a quality representation in [0, 1]:

qi = 1− tanh(βici), (3)



with i ∈ {joint, spatial, visibility, safety, effort} and
a scaling constant βi.

g) Total quality: The online quality measure
qonline ∈ [0, 1] considering human comfort, visibility,
safety and effort of arm postures is defined as a weighted
sum of above qualities:

qonline =
∑
i

ωiqi, (4)

with i ∈ {joint, spatial, visibility, safety, effort} and
the weights ωi ∈ [0, 1] sum up to 1. In our experiments we
uniformly distribute the influence of the different qualities
by choosing ωi = 1/5.

The overall quality qtotal ∈ [0, 1] is then obtained by
a weighted sum of qonline and the offline computed local
dexterity value of the target arm posture (Sec. III-A).

For planning human-robot interaction tasks, maximizing
the overall quality qtotal results in interaction targets, that
are as comfortable, visible and safe as possible.

C. Interaction Workspace

Fig. 5. Interaction Workspace for various distances between robot and
human (70cm, 110cm, 150cm). Average number of potential interaction
targets and computation times are shown in Table I.

In order to hand over an object to a human, the robot has to
determine potential hand-over poses (i.e. potential interaction
targets). A potential hand-over pose must meet the following
requirements:

• It must be reachable for the robot’s TCP.
• It must ensure, that when attained by the robot’s TCP,

the held object becomes reachable and graspable for the
human.

• It must satisfy task dependent constraints.
The set of all potential hand-over poses between the robot

and human is represented by a voxel grid in 6D pose space,
which will be referred to as Interaction Workspace. Since
all potential hand-over poses are implicitly reachable for the
robot’s TCP, the Interaction Workspace is fully covered by
the robot’s workspace.

The Interaction Workspace directly depends on the actual
relation of robot and human and hence, it cannot be created in
an offline step. Nevertheless, the workspace representations
of robot and human, which were created offline, can be used
to efficiently build the Interaction Workspace as an intersec-
tion of both workspaces. In addition, quality considerations
in terms of dexterity and comfort are taken into account.

As shown in Algorithm 1, the Interaction Workspace WI

is constructed by considering the robot grasp grobot, which

defines the transformation form the robot’s TCP to the object,
and a set of grasps Ghuman that define possible grasps which
can be realized by the human in order to receive the object.
The entries of WI are created by going through all grid cells
and, in case the corresponding pose is reachable by the robot,
updating the entry with the corresponding quality value q.
The quality of the current pose is determined on the fly by
solving the inverse kinematics for the human and computing
the overall quality qtotal (Sec. III-B). The quality value qtotal
is then stored in the corresponding entry of the Interaction
Workspace.

A visualization of the Interaction Workspace for an ex-
emplary scene is shown in Fig. 4 (a) and (b). The human is
laying on the ground and the robot is supposed to hand-over
an object to the person. The 6D Interaction Workspace WI is
created as described above and visualized in 3D. Fig. 4 (b)
shows a cut through WI , in which the color indicates the
quality over all orientational dimensions of WI .

Algorithm 1 Buildup of the Interaction Workspace
1: function INTERACTIONWORKSPACE(Ghuman, grobot)
2: Wrobot ← workspace of the robot
3: Whuman ← workspace of the human
4: WI ← empty Interaction Workspace
5: for all Pose pvoxel ∈WI do
6: if Wrobot.isReachable(pvoxel) then
7: for all Grasp ghuman ∈ Ghuman do
8: Pose pobject ← grobot · pvoxel
9: Pose phuman ← pobject · ghuman

10: Configuration chuman ← IK(phuman)
11: Quality q ←quality(chuman)
12: WI .updateEntry(pvoxel,q)

return WI

D. Determining Suitable Interaction Targets

The Interaction Workspace WI can be used to identify
potential workspace poses at which human-robot interaction
can take place. Hence, possible targets for hand-over tasks
can be determined in workspace, but they need to be verified
by an IK solver, since the workspace representations are
approximated and potential collisions with the environment
need to be taken into account. As shown in Algorithm 2, WI

is queried for promising poses until an IK solution could be
found. In case the IK search fails, the corresponding entry
in WI is removed. A potential interaction target is shown in
Fig. 4 (c). The IK query was solved for robot and human.

IV. EVALUATION AND APPLICATION

A. Evaluation

In the following, we evaluate the computation of the
Interaction Workspace in a scenario where the robot is placed
in front of the human at various distances. The task is to find
a suitable configuration for the robot to hand over a wrench
that is held in the robot’s left hand. The setup involves a
43-DoF model of the humanoid robot ARMAR-III [1] and a
104-DoF model of an average sized human [11], [12]. The



Fig. 6. Scenario of a task to hand over a mallet that is held in the robot’s left hand. (a) Interaction Workspace. (b) Cut through the Interaction Workspace.
(c) Interaction Target.

Algorithm 2 Compute a Hand-over Target
1: function SEARCH-HAND-OVER-CONFIGURATION
2: WI ← Interaction Workspace
3: while !Timeout() do
4: Pose p← pose with highest quality in WI

5: Configuration c← IK(p)
6: if isValid(c) then
7: return c
8: else
9: WI .remove(p)

10: return failure

simulation is carried out with the C++ robotics simulation
package Simox [13]. All tests have been performed on a 2.4
GHz Core i7 PC within a mulit-threaded application.

Table I shows the average number of potential interac-
tion targets and the computation time of the Interaction
Workspace for various distances between human and robot.
For computing the Interaction Workspace, the human’s left
arm (7 DoF), as well as the robot’s hip and left arm (3 + 7
DoF) were considered. The results show that the computation
time and size of the Interaction Workspace is inversely
proportional to the distance between human and robot. The
greater the distance, the less possibilities do exist to hand
over an object to the human, hence the decreasing size of the
Interaction Workspace. Since determining a human-oriented
quality index for every voxel (i. e. possible interaction target)
involves solving the inverse kinematics, the computation time
directly depends on the size of the Interaction Workspace
(i. e. the number of voxels). Fig. 5 shows the Interaction
Workspaces that correspond to the distances of 70cm, 110cm
and 150cm.

B. Application to a hand-over task

In this use case, we show how the proposed Interaction
Workspace can be used in a realistic setup with the humanoid
robot ARMAR-III. The task of the robot is to support a
human technician who is performing maintenance works
while standing on a ladder.

During the maintenance work, the human operator will

Distance (cm) Potential Targets Time (s)

70 3576 2.87
90 2290 2.21

110 1110 1.24
130 373 0.51
150 78 0.18

TABLE I
AVERAGE NUMBER OF POTENTIAL INTERACTION TARGETS AND

COMPUTATION TIME OF THE INTERACTION WORKSPACE FOR VARIOUS

DISTANCES BETWEEN HUMAN AND ROBOT.

from time to time need different tools, which he requests
from the robot. The robot has to localize them, grasp them
and hand them over to the human. Similarly, the human
sometimes hands back objects to the robot that it has to
place in an appropriate location.

The whole task is programmed using the statechart-
based robot software framework ArmarX [17]. Grasping
and placing of the objects is realized using position-based
visual servoing [18], and the robot automatically chooses
appropriate view directions based on the required objects
and its uncertainty about their locations [19]. The ArmarX
statechart is visualized in Fig. 7.

Fig. 7. The ArmarX statechart for the maintenance task.

The handover from robot to human is planned based on
the Interaction Workspace as described in Section III. The



Fig. 8. A hand over task executed with ARMAR-III.

resulting data structures are visualized in Fig. 6. The robot
hands over the object and waits for the human to grasp it,
which is detected using a force-torque sensor in the wrist.
Only when the human exerts force on the object by grasping
it, the robot releases it (see Fig. 8).

For the handover in the other direction, i.e. from human to
robot, the robot has to react to the human’s actions and thus
can not plan its motion beforehand. Instead, once the human
hand comes into reach, the robot moves its hand towards it
until a force contact indicates that the object is within its
hand, and grasps it.

V. CONCLUSION

We introduced the Interaction Workspace as a representa-
tion of the workspace that is accessible by multiple agents
in human-robot interaction tasks. The Interaction Workspace
provides task-specific information about dexterity and com-
fort and can be efficiently queried to determine potential
targets for human-robot interaction tasks (e.g. object hand-
over). It can be constructed in an efficient way by making
use of pre-computed workspace representations of robot and
human. Due to the possibility to incorporate different quality
measures, task-specific constraints can be considered during
online processing. We evaluated the performance of the
buildup of the Interaction Workspace in different setups. In
addition, we showed how the proposed approach can be used
for planning hand-over poses in a human-robot interaction
scene.

In future work, we plan to apply the Interaction Workspace
approach for different applications, e.g. for planning joint
actions of human and robot. Additionally, we will investigate
if other quality measures, e.g. from biomechanical studies,
can be used to improve the representation of the human
comfort.
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four, “The ArmarX statechart concept: Graphical programming of
robot behaviour,” Frontiers in Robotics and AI, vol. 3, p. 33, 2016.

[18] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, “Integrated grasp
and motion planning,” in IEEE International Conference on Robotics
and Automation (ICRA), Anchorage (AK), 2010, pp. 2883–2888.

[19] K. Welke, D. Schiebener, T. Asfour, and R. Dillmann, “Gaze selection
during manipulation tasks,” in IEEE International Conference on
Robotics and Automation (ICRA), 2013, pp. 652–659.


