
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017 1

Planning High-Quality Grasps
using Mean Curvature Object Skeletons
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Abstract—In this work, we present a grasp planner which
integrates two sources of information to generate robust grasps
for a robotic hand. First, the topological information of the
object model is incorporated by building the mean curvature
skeleton and segmenting the object accordingly in order to
identify object regions which are suitable for grasping. We show
how this information can be used to derive different grasping
strategies, which also allows to distinguish between precision and
power grasps. Second, the local surface structure is investigated
to construct feasible and robust grasping poses by aligning the
hand according to the local object shape. We apply the approach
to a wide variety of object models of the KIT and the YCB
real-world object model databases and evaluate it with several
robotic hands. The results show that the skeleton-based grasp
planner is capable to generate high-quality grasps in an efficient
manner. In addition, we evaluate how robust the planned grasps
are against hand positioning errors as they occur in real-world
applications due to perception and actuation inaccuracies. The
evaluation shows that the majority of the generated grasps are
of high quality since they can be successfully applied even when
the hand is not exactly positioned.

Index Terms—Grasping, Multifingered Hands

I. INTRODUCTION

THE ability to robustly plan feasible grasps for arbitrary
objects is an important capability of autonomous robots

in the context of mobile manipulation. It allows to generate
grasping configurations in an autonomous and unsupervised
manner based on the object’s 3D mesh information. Part-based
grasp planning is an approach to deal with the complexity
of arbitrary shaped objects by segmenting them into simpler
parts which are more suitable for shape analysis for grasp
generation. This procedure complies also with the behavior
of humans which prefer to structure objects into smaller
segments (see e.g. the recognition-by-components paradigm
of Biederman [1]). Representing an object by its parts fits
very well to robotic grasp planning, since a robotic gripper
or hand can usually only grasp an object by accessing a local
surface area for establishing contacts. The part-based grasp
planner presented in this work is based on the assumption
that an object can be segmented according to its skeleton
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Fig. 1. The object mesh model (1) is used to build the mean curvature object
skeleton (2). The skeleton is segmented (3) and the corresponding surface
segments (4) are depicted in red (segment end points), yellow (connecting
segments), and blue (segment branches). The results of the skeleton-based
grasp planner are visualized (5) by indicating the approach directions of the
planned grasps via green lines. In addition, a selection of grasps is fully
visualized.

structure. The object skeleton simplifies the topological repre-
sentation and provides information about the connectivity of
the segments. Object segmentation is realized by analyzing the
skeleton according to branches and crossings in the topology.
The object segments are analyzed separately to determine if
several grasping strategies (e.g. power or precision grasps)
can be applied according to the local surface information
(see Figure 1). Since robustness is essential for robotic grasp
planning, it is desirable to plan grasps which can be executed
robustly in realistic setups. Hence, we aim at planning grasps
that are robust to disturbances and inaccuracies as they appear
during execution due to noise in perception and actuation. In
this work, we show that the analysis of the object skeleton in
combination with the usage of local surface properties leads to
grasping hypotheses which are robust to inaccuracies in robot
hand positioning, which indicates a reliable execution on real
robot platforms.

The proposed skeleton-based grasp planning approach
makes use of an analysis of the object structure to identify
object regions on which a high probability exists that grasps
can be applied. In addition, we show that an analysis of the
local object surface, encoded by grasping strategies, leads to
grasping hypotheses with high force-closure and robustness
rates. An implementation of the presented grasp planning
approach based on the Simox library [2] is provided as a C++
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open source project1.
The paper is organized as follows. Section II introduces

related work while section III describes the mean curvature
object skeleton, mesh segmentation and local object properties
analysis. Section IV describes the part-based grasp planning
and section V presents the results. Section VI conclude the
contribution of the paper.

II. RELATED WORK

Napier divided hand movements in humans into prehen-
sile movements and non-prehensile movements to distinguish
between suitable and non-suitable grasping movements [3].
He showed that prehensile grasping movements of the hand
consist of two basic patterns which he termed precision grasp
and power grasp. Based on this work Cutkosky developed
a grasp taxonomy which distinguishes between 16 different
grasping types [4]. The transfer of grasping strategies in
humans to robotic applications is usually done by reducing the
complexity, e.g. by considering a low number of grasp types
(i.e. power and precision grasp) or by using the Eigengrasp
approach which is capable of approximating human grasping
movements with low degree of freedom spaces [5].

Approaches for grasp synthesis in the literature are usually
divided into analytical and empirical or data-driven algorithms
[6], [7]. Analytical approaches are based on geometrical
properties and/or kinematic or dynamic formulations, whereas
data driven approaches rely on simulation. The complexity of
the problem is often reduced by utilizing randomized methods
and by considering simplified contact models. Data-driven
approaches also make use of simulation environments such
as GraspIt! [8], OpenRave [9], and Simox [2] to generate
and evaluate grasping poses. Many works generate grasping
hypotheses and evaluate them by applying the Grasp Wrench
Space approach which allows to determine if a grasp is force-
closure (i.e. valid) and to compute ε or Volume quality values
indicating how much the grasping configuration can resist to
external forces [10], [11].

The execution of such grasps with real robot hands is
challenging since small disturbances, as they appear during
real-world execution, could quickly lead to unstable grasping
configurations as shown in [12]. It has been shown that such
potential inaccuracies in execution can be considered during
grasp planning by analyzing small variations of the generated
grasping pose.

In part-based grasp planning there exist several approaches
which consider parts of the object for grasp synthesis. In
[13] the object is approximated by a set of primitive shapes
(box, cylinder, sphere, cone) to which manually defined hand
configurations can be assigned. A similar approach has been
presented in [14]. The object is decomposed in superquadrics
and several heuristics are used to generate the grasping infor-
mation. In [15] the object is decomposed based on Minimal
Volume Bounding Boxes. grasping information is synthesised
on the resulting bounding boxes. The grasp planner presented
in [16] is operating on a topological object segmentation which
is computed based on the Reeb Graph formalism. The resulting

1https://gitlab.com/Simox/simox-cgal

Fig. 2. The mean curvature skeleton of several objects.

object segments are used for randomized grasp generation.
Independent Contact Regions can be used to determine surface
areas that are suitable for grasping [17]. An voxelized object
representation is used by [18] to plan feasible grasps via hand-
object geometric fitting strategies.

Our previous work described in [19], [20] is related to the
work we present here since it uses the medial axis transform
as a simplified object representation on which grasp planning
is performed. The medial axis representation is computed on
point clouds or mesh data and provides information about the
object structure and object symmetries. Before grasp planning
can be performed, the medial axis transform is processed via
cluster algorithms and transferred to grid-based data structures
on which grasp synthesis is realized based on several heuristics
for typical grid structures. In contrast to [20], we use mean
curvature skeletons [21] to represent the object structure.
Compared to the medial axis approach, this representation
results in a reduced complexity while preserving full object
surface information (see Section III). We exploit the skeleton
structure for object segmentation and in Section IV we show
how the object segments can be analyzed for part-based grasp
planning. The approach is evaluated in Section V on several
object data sets by investigating the force closure rate and
the robustness of the generated grasps according to [12].
In addition, we compare the results to a randomized grasp
planning algorithm which aligns the approach direction to the
object surface [2], similar to the approach used in [9] and [22].

III. OBJECT SKELETONS

3D mesh objects are processed in order to generate mean
curvature skeletons which provide a medically centered skele-
ton representing the object’s topology [21]. As we show in
this section, the skeleton data structure is used to segment the
object according its topology.

A. Mean Curvature Skeletons

Mean curvature skeletons are generated by a contraction-
based curve skeleton extraction approach. As input, the 3D
mesh of the object is processed in order to retrieve a reg-
ularized surface which results in a triangulated object data
structure. The set of object surface points are denoted by
O = o0, . . . , on−1. As described in [21], the skeleton is build
based on iterative mesh contraction via a mean curvature flow
approach. Several results are depicted in Figure 2.

A resulting skeleton is a graph S = (V,E), in which each
vertex v ∈ V is connected to one or multiple neighbors via
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Fig. 3. The segmentation of several objects together with the computed
skeletons. The surface is colored according to the corresponding skeleton.
Branching areas are colored in blue, endpoints result in red color, and the
surface associated with connecting segments is visualized in yellow.

edges e ∈ E. A vertex vi = {si, Pi} consist of the 3D position
of the skeleton point si ∈ R3 and a set of uniquely associated
points on the object surface Pi ⊂ O. This is an important
property of the mean curvature flow skeleton algorithm which
is used later when we analyze the local object shape of a
skeleton interval on basis of the corresponding object surface
points. More details on the mean curvature flow skeleton
approach can be found in [21]. Since all surface points of
the object are uniquely associated with a skeleton point, the
following relation holds

∑
|Pi| = |O|. An edge e = {va, vb}

connects the two vertices va and vb.

B. Mesh Segmentation

The object is segmented based on the skeleton structure
in order to generate segments which represent the object’s
topology. For further processing, each skeleton vertex v is
classified according to its connection to neighboring vertices:

Branching Vertex: Such vertices represent branches or
crossings in the skeleton structure. As expressed in Equation 1,
a vertex v is a branching vertex if there exist more than two
edges in the skeleton S = (V,E) containing v.

|{e ∈ E : v ∈ e}| > 2⇔ v is a branching vertex (1)

Endpoint Vertex: An endpoint vertex v is connected to
exactly one other vertex (see Equation 2).

|{e ∈ E : v ∈ e}| = 1⇔ v is an endpoint vertex (2)

Connecting Vertex: A connecting vertex v connects to
exactly two neighbors as expressed in Equation 3.

|{e ∈ E : v ∈ e}| = 2⇔ v is an connecting vertex (3)

The mesh can now be easily segmented by analyzing the
skeleton structure and grouping the skeleton vertices according
to their connections. A segment Si ⊂ S is defined as follows:

∀v ∈ Si : v is an connecting vertex ∧
∀e = {va, vb} ∈ Si : va, vb ∈ Si.

(4)

The resulting segments Si, contain sub graphs of S consist-
ing of connecting vertices which are enclosed by branching
or endpoint vertices. As depicted by several exemplary results
in Figure 3, the object segmentation provides valuable infor-
mation about the object structure which can be exploited for
grasp planning as we show in the following section.

IV. PART-BASED GRASP PLANNING

The object skeleton and the resulting segmentation can now
be used to analyze global object properties based on structural
and topological information. This information is e.g. used to
prefer specific topological structures for grasp planning or to
identify possible approach directions. In addition, we compute
and analyze local object properties as a basis for the decision
if a specific grasping strategy can be applied. These local
object properties are related to a specific skeleton point and
provide several parameters which describe the local object sur-
face allowing to simplify the process of local shape analysis.
Our approach allows for defining different grasping strategies
based on global and local object information. Although, the
approach is not limited to a fixed set of grasping strategies, we
investigate the most common grasping strategies in the context
of robotic grasping which relate to power and precision grasps.
Figure 4 depicts an overview of the grasp planning process.

Grasping 
Hypotheses

Object Object Segments

Grasping 
Strategies

Local and Global Object Properties

Valid Grasps

Skeleton

Fig. 4. The grasp planning process.

The grasp planner is shown in Algorithm 1. First, the
method nextSkeletonVertex determines the next skeleton vertex
vi. To do so, the whole skeleton is uniformly sampled accord-
ing to the skeleton vertex distance parameter d, which defines
the minim distance between two consecutive skeleton vertices.
Then, we iterate through all defined grasping strategies and
calculate several local object properties. The properties P are
used to evaluate if the grasping strategy gs is applicable to
the vertex vi. If so, several grasping hypotheses are created.
For each hypothesis h, a validity check is applied to ensure
the correctness of the result. All valid hypotheses are finally
stored and returned.

Algorithm 1: Grasp Planner
Input: skeleton S, grasping strategies GS, vertex dist. d
Output: set of valid grasps G

G = ∅
while (!timeout() ∧ verticesAvailable()) do

vi = nextSkeletonVertex(S, d)
forall (gs ∈ GS) do

P = calculateLocalObjectProperties(vi, gs, S)
if (evaluateGraspingStrategy(gs, P )) then

H = generateGraspingHypotheses(vi, gs, P )
forall (h ∈ H) do

if (isValid(h)) then
G = G

⋃
{h}

return G
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A. Local Object Properties

To verify that a grasping strategy is applicable, we define
several local object properties which can be derived from a
skeleton vertex v = (s, P ):

Vertex Type PT : Identifies the type of vertex PT ∈
{connection, endpoint, branch}.

Grasping Interval PI : Starting from v, PI includes all
outgoing skeleton sub graphs until either a branching or
endpoint vertex is reached or a maximum length is travelled
on the corresponding graph. Hence, PI = {SG0, . . . , SGs}
contains the sub graphs SG ⊂ S starting from v resulting
in |PI | = 1 for endpoint vertices, |PI | = 2 for connecting
vertices and |PI | > 2 for branching vertices. Depending on
the evaluated strategy, the maximum path length is set to half
of the robot hand’s width (power grasps) or to the width of
one finger (precision grasp). This information is of interest
to determine if a connection segment offers enough space for
applying a grasp. In addition, the curvature κ of each point
on the grasping interval needs to be limited in order to avoid
sharp edges which are difficult to capture in terms of aligning
the hand for grasp planning. Hence, a sub graph is cut if the
curvature at a specific skeleton point is too high. The curvature
at a skeleton point s is defined as

κ(s) =
||s′ × s′′||
||s′||3

,

with the first and second derivatives s′ and s′′ which can be
derived by numerical differentiation [23].

Local Surface Shape PSS : PSS describes the local surface
of the object by providing several parameters. First, we reduce
the complexity of the analysis of the local object shape by
introducing a grasping plane onto which the associated surface
points of PI are projected. The plane is defined by the skeleton
point s and the normal parallel to the tangent in s. The
considered surface points cover all associated surface points of
the skeleton vertices in PI (see Figure 5). This is possible since
the grasping interval PI contains a set of skeleton vertices and
for each skeleton vertex there exists a unique association to
object surface points.

Fig. 5. Left: Based on a skeleton vertex v (shown in green), a grasping interval
PI is depicted. The red planes define the borders of PI and the red points
visualize the object surface points which are associated with PI . On the right,
the grasping plane is depicted in green and the projected surface points are
shown in red. The corresponding eigenvectors of the projected surface points
are visualized as red and green arrows.

The projected surface points are analyzed by applying a
principal component analysis to determine the eigenvalues

λ1, λ2 and the eigenvectors ev1, ev2. In the following, λ2 is
used to identify the local thickness of the object. For further
processing, the ratio r = λ1

λ2
is calculated and a threshold tr

is used to distinguish between round and rectangular surface
shapes. Throughout this work, we use tr = 1.2.

shape =

{
round if r < tr

rectangular otherwise
(5)

Finally, the local surface shape is represented through the 5-
tuple PSS = (λ1, λ2, ev1, ev2, shape). Note, that with this
analysis of the local object shape, we again introduce a
simplification in order to catch the most common shapes of
object parts. By introducing a more sophisticated analysis of
the local object shape, the whole approach could be extended
and improved in a way that more complex object parts could
be processed.

B. Grasping Strategies

Our approach allows for setting up a variety of grasping
strategies based on the available local and global object
information. The grasping strategies can be interpreted as
heuristics, which encode promising strategies according to the
available hand and object parameters. In the following, we
describe several grasping strategies which can be used to gen-
erate precision and power grasps on connection and endpoint
parts of the skeleton. To evaluate if a grasping strategy gs
can be applied, the local object properties are analyzed as
described in Table I. Note, that with the following grasping
strategies we only cover several straight-forward approaches
to apply power or precision grasps. One could easily define
more sophisticated grasping strategies by performing a more
detailed analysis of local and global object properties.

The grasping strategies can be interpreted as follows:
1) Precision Grasp on Connecting Segments: This strat-

egy is applied on a vertex of a connection segment, which
means that exactly two skeleton intervals are available in PI .
The length of each interval has to be at least fingerwidth
resulting in an accumulated length of the local object skele-
ton intervals of two times the width of an finger which
is reasonable for applying precision grasps. In addition, we
distinguish between round and rectangular shapes of the local
object surface. For round shaped objects, we evaluate if the
local object thickness, identified by λ2 is within the range
[pre−2 , pre

+
2 ]. In case the shape is rectangular, we additionally

check if the local object length λ1 is within [pre−1 , pre
+
1 ] in

order to bias the decision towards power grasps on objects
which provide a reasonable depth.

2) Power Grasp on Connecting Segments: Similar to the
precision grasp strategy, we analyze the length of both skeleton
intervals in PI for a given vertex of a connection segment.
The length of each interval has to be at least 0.5 ·handwidth
in order to be able to apply a power grasp. In addition, we
distinguish between round and rectangular shapes of the local
object surface. For round shaped objects, we evaluate if the
local object thickness, identified by λ2, is within the range
[pow−2 , pow

+
2 ]. In case the shape is rectangular, we may want

to exclude small objects and therefore we additionally check
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TABLE I
GRASPING STRATEGIES ARE DEFINED ACCORDING TO SEVERAL LOCAL OBJECT PROPERTIES.

Grasping Strategy Nr. PT
Interval Length in

PI
Shape λ1 λ2

Precision Grasp on
Connecting Segments

1a con. ≥ fingerwidth round n/a [pre−2 , pre
+
2 ]

1b con. ≥ fingerwidth rect. [pre−1 , pre
+
1 ] [pre−2 , pre

+
2 ]

Power Grasp on Connecting
Segments

2a con. ≥ 0.5 · handwidth round n/a [pow−
2 , pow

+
2 ]

2b con. ≥ 0.5 · handwidth rect. > pow−
1 [pow−

2 , pow
+
2 ]

Precision Grasp on
Endpoint Vertices 3 endpt. n/a round,

rect. n/a [pre−2 , pre
+
2 ]

Power Grasp on Endpoint
Vertices 4 endpt. n/a round,

rect. n/a [pow−
2 , pow

+
2 ]

Fig. 6. The grasp center points of the ARMAR-III hand for precision and
power grasps. The coordinate axes (x: red, y: green, z: blue) are used to align
the hand.

if the local object length λ1 is larger than pow−1 . Since for
rectangular shapes, the approach directions are only derived
considering the thinner side (which is covered by λ2), we do
not need to specify an upper bound for λ1 (see also Figure 7
on the right).

3) Precision Grasp on Endpoint Vertices: This strategy is
applied on endpoints of the skeleton structure. Similar to the
grasping strategies on connecting segments, the local object
shape is interpreted based on the properties of the grasping
plane. The length of the local object shape has to be within
the range [pre−2 , pre

+
2 ] in order to be able to apply a precision

grasp.
4) Power Grasp on Endpoint Vertices: Power grasps

are applied on endpoints if the local object length is within
[pow−2 , pow

+
2 ].

C. Grasping Hypotheses

From each grasping strategy several grasping hypotheses are
derived and evaluated for correctness (collision-free and force
closure) in order to validate the generated grasp.

Grasp Center Points: For each hand model, we define
a grasp center point (GCP) for precision and power grasps,
identifying the grasping center point and the approaching
direction [24]. The GCPpre and GCPpow for the robotic hand
of ARMAR-III is depicted in Figure 6. The approach direction
is the z-axis of the coordinate system (shown in blue).

Building Grasping Hypotheses: For a given skeleton
vertex v, all valid grasping strategies are evaluated and a
set of grasping hypotheses is derived. Therefore, a set of
potential approach directions and corresponding hand poses
is determined as follows.

Hand Orientation: The shape entry of the Local Surface
Shape property PSS results in the generation of different
approach directions. In case of a round local surface, the

Fig. 7. The generated approach directions are depicted for an endpoint
with local surface properties round (left) and rectangular (right). In addition,
the approach directions for one skeleton point on a connecting segment are
depicted for round and rectangular local surface properties.

approach direction is uniformly sampled around the skeleton
point s. In this case, the approach directions are perpendicular
to the skeleton tangent in s for connecting segments and
aligned with the skeleton tangent for endpoints. To fully
specify an approach direction three parameters are needed.
In case of connection segments these parameters are: a) the
z-axis of GCP is perpendicular to the skeleton tangent; b)
the y-axis of the GCP is parallel to the tangent; c) the
remaining parameter is uniformly sampled. In case of endpoint
segments, two parameters are specified by aligning the z-axis
of the GCP to the tangent in s. The remaining parameter
is again specified by uniform sampling. If the local object
shape evaluates to rectangular, four approach directions are
built to align the robot hand according to the eigenvectors
ev1 and ev2. In Figure 7, the generated approach directions
for one endpoint and one skeleton point on a connection
segment are depicted for round (left) and rectangular (right)
local surface properties. In both figures, the approach direction
is projected along the negative approach direction onto the
object surface. It can be seen that a round local surface results
in uniformly sampled orientations (in this example, there are
eight directions generated for an endpoint, respectively 16 for
a skeleton point on a connecting segment). The right figure
shows how a rectangular local surface results in two approach
directions for an endpoint and four approach directions for a
skeleton point on a connection segment. Based on this set of
hand orientations, which is computed for a specific skeleton
vertex, the full grasping pose is computed in the next steps.

Hand Position: The initial position of the hand is derived
from the skeleton point s. This position is extended to full
6D hand poses by combining it with all computed hand
orientations of the preceding step.

Retreat Movement: To generate a valid grasping hypothesis,
the hand model is moved backwards (according to the ap-
proach direction) until a collision-free pose is detected. This
procedure is aborted if the movement exceeds a certain length.
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Fig. 8. (a) The grasping interval together with all associated surface points
for a skeleton end point. (b) The grasping plane together with the projected
surface points. (c) A generated grasp based on the grasping strategy 1b.

In Figure 8 and Figure 9 the grasping interval, the grasping
plane and a generated grasp are depicted for an endpoint vertex
and a connection segment respectively.

D. Validation of Grasping Hypotheses

All generated grasping hypotheses are evaluated by closing
the fingers, determine the contacts on the object model and by
determining if the contacts result in a force-closure grasp. In
addition, the quality of the grasp in terms of the grasp wrench
space ε value is computed. For grasp stability analysis we
employ the methods provided by the Simox library [2]. All
force closure grasps are stored in the set G of valid grasps. In
Figure 10 the resulting set of grasps are depicted for several
objects of the KIT object model database [25] and the Yale-
CMU-Berkeley (YCB) Object and Model Set [26]. Note, that
the object models were generated based on real-world point
cloud data, i.e. no artificial shapes are used for grasp planning.
The resulting grasps are visualized by projecting the GCP onto
the surface according to the corresponding approach direction.
The orientation of the grasp is visualized via a green bracket.
A selection of the generated grasps for different hands is
additionally shown in Figure 11.

V. EVALUATION

The skeleton-based grasp planning approach is evaluated
by applying the algorithm on a wide variety of objects of the
Yale-CMU-Berkeley (YCB) Object and Model Set [26] and
the SecondHands subset of the KIT object model database
[25]. All object models have been generated by processing
point cloud scans of real-world objects. By using such realistic
object models, we show that the grasp planning approach can
be used under real-world conditions, i.e. without depending
on perfectly modeled object meshes.

We compare the results of our approach with a randomized
grasp planner [2] which generates power grasps by aligning
the approach direction of the end effector to surface normals
and evaluates the success by closing the fingers, determining
the contacts and evaluating force closure and the grasp quality
with the grasp wrench space approach. The planner generates
similar results as the approach used in [9] and [22].

In total, we use 83 objects, 69 from the YCB data set
(we exclude all objects with degenerated meshes) and 14
from the SecondHands subset of the KIT object database.

Fig. 9. (a) The grasping interval together with all associated surface points for
a connection skeleton point. (b) The grasping plane and the projected surface
points. (c) A generated grasp based on the grasping strategy 3.

The evaluation is performed with three different robot hand
models: The ARMAR-III hand, the Schunk Dexterous Hand,
and the Shadow Dexterous Hand (see Figure 11). For all hands
we define a precision and power preshape with corresponding
GCP information. In total, we generated around 4000 valid
grasps for each hand.

A. Efficiency and Force-Closure Rate

The first evaluation concerns the performance of the ap-
proach in terms of efficiency and force closure rate. In Table II,
the results of the reference planning approach and the skeleton-
based grasp planner are shown for the ARMAR-III hand, the
Schunk Dexterous Hand, and the Shadow Dexterous Hand.
The table shows the measured mean values together with the
standard deviation over all grasps that were generated on all
83 considered objects. The time that is needed for generating a
valid grasp directly depends on the complexity of the involved
3D models of the hand since many collision and distance
calculations need to be performed when closing the fingers
for contact detection. The comparison shows that the skeleton-
based approach outperforms the surface-based planner in terms
of efficiency (time needed to generate a grasping pose) and
force-closure rate (number of force-closure grasps in relation
to all generated grasps). Note, that both algorithms validate the
computed grasping hypotheses and hence, only force-closure
grasps are reported. With this evaluation, we show how good
the grasping strategies apply to the different objects and that
the vast majority of the grasping hypotheses result in force-
closure grasps.

When looking at the resulting grasping poses in Figure 11, it
can be seen that the planned grasping poses are of high quality
in terms of what a human would expect how a robot should
grasp an object. Although we cannot provide any numbers
on the human-likeness of the generated grasps, the underlying
algorithm produces good grasps in this sense since the robot
hand is aligned with the structure of the object’s shape.

B. Robustness

We evaluate the robustness of the generated grasping infor-
mation by investigating how inaccuracies in hand positioning
would affect the success rate of the grasping process. Related
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Fig. 10. Results of the skeleton based grasp planner with several objects of the KIT and YCB object databases. The red dots and the green lines depict the
approach movements of the corresponding grasp.

Fig. 11. Excerpt of the generated grasps for the three hand models that were used in the evaluation.

TABLE II
RESULTS OF THE EVALUATION.

Avg. Time Force-Closure Robustness
per Grasp Rate Score r

Surface-based Grasp Planner
ARMAR-III Hand 32.29ms 57.80% 57.17%

±23.87ms ±28.54% ±16.18%
Schunk Dext. Hand 67.43ms 70.78% 61.94%

±23.22ms ±21.72% ±27.39%
Shadow Dext. Hand 90.88ms 43.55% 55.34%

±34.05ms ±28.32% ±18.83%
Skeleton-based Grasp Planner
ARMAR-III Hand 12.19ms 95.74% 94.23%

±3.47ms ±11.33% ±9.52%
Schunk Dext. Hand 12.98ms 86.69% 94.87%

±2.72ms ±20.50% ±9.74%
Shadow Dext. Hand 28.68ms 85.53% 76.46%

±11.34ms ±25.40% ±20.36%

to the approach in [12], we compute a robustness score r for
each grasp which indicates how many pose variances within a
certain distribution result in a force-closure grasp. We create
erroneous variances of the grasping pose p by applying a
random position and orientation offset to the pose of the
grasp. As proposed in [12], the offset is applied w.r.t. the
center of all contacts. The resulting pose p′ is then evaluated
by moving the hand to p′, closing the fingers, detecting the
contacts and evaluating if the pose would result in a force-
closure grasp. If p′ results in an initial collision between hand
and object, we count this pose as a failed sample, although
there might be numerous grasps which could be executed. To
get more detailed information, such situations could be further
investigated by applying a physical simulation and considering
the approach movement.

The robustness score r is then generated by determining

the percentage of force-closure grasps of the total number
of displaced samples. In all our experiments we draw 100
samples of displaced grasping poses with a normal distributed
error (standard deviation: 10mm and 5 degree).

In Figure 12, a histogram of the robustness scores for all
generated grasps on all considered objects for the hand of
ARMAR-III is shown. The histogram bins on the x-axis cover
5% each and the y-axis indicates the absolute percentage of
each histogram bin. The same histogram is shown in Figure 13
and in Figure 14 for the Schunk Dexterous Hand and the
Shadow Dexterous Hand respectively. It can be seen, that the
majority of the planned grasps of the skeleton-based approach
are robust to disturbances.

As shown in Table II in the right column, the robustness
score r could be considerably increased for all three hand mod-
els when using the skeleton-based grasp planning approach. It
is above 94% for the ARMAR-III and the Schunk Dexterous
Hand, which means that 94% of the investigated ill-positioned
grasps were leading to force-closure configurations. The value
for the Shadow Dexterous Hand is lower, which seems to be
mainly caused by the fact that the hand kinematics is more
complex and the corresponding preshapes provide less room
for re-positioning. The execution of these high-quality grasps
with a real robot manipulator would result in higher grasping
performance since inaccuracies in perception and/or gripper
positioning would still result in a successful grasp.

VI. CONCLUSION

In this work, we presented a grasp planning approach
which takes into account global and local object properties
to generate stable and robust grasping information for robotic
hands. Global information is gathered by analyzing the object’s
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Fig. 12. Robustness histograms for the reference grasp planning approach
(red) and the skeleton-based grasp planner (blue) with the ARMAR-III hand.
The histogram bins are arranged on the x-axis, the y-axis indicates the absolute
percentage.
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Fig. 13. Robustness histograms for the Schunk Dexterous Hand.
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Fig. 14. Robustness histograms for the Shadow Dexterous Hand.

mean curvature skeleton in order to identify suitable regions
for applying a grasp. In addition, local information is used to
select the grasp type and to align the hand according to local
skeleton and surface properties. We showed that the approach
is capable of generating high quality grasping information for
real-world objects as they occur in object modeling databases
such as the KIT or the YCB object DB projects. We evaluated
the approach to a wide variety of objects with different robot
hand models and showed that the resulting grasps are more
robust in the presence of inaccuracies in grasp execution
compared to grasp planners which do not consider local object
properties. In addition, we think that if we compare the results
of our grasp planner to the results of other approaches, the
generated grasping poses look more natural, i.e. more human
like, although we did not perform a qualitative evaluation in
this sense.
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