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Abstract— Teaching robots object manipulation skills is a
complex task that involves multimodal perception and knowl-
edge about processing the sensor data. In this paper, we show a
concept for humanoid robots in household environments with a
variety of related objects and actions. Following the paradigms
of Programming by Demonstration (PbD), we provide a flexible
approach that enables a robot to adaptively reproduce an action
sequence demonstrated by a human. The obtained human
motion data with involved objects is segmented into semantic
conclusive sub-actions by the detection of relations between
the objects and the human actor. Matching actions are chosen
from a library of Object-Action Complexes (OACs) using the
preconditions and effects of each sub-action. The resulting
sequence of OACs is parameterized for the execution on a
humanoid robot depending on the observed action sequence
and on the state of the environment during execution. The
feasibility of this approach is shown in an exemplary kitchen
scenario, where the robot has to prepare a dough.

I. INTRODUCTION AND RELATED WORK

Robots already are versatile helpers in structured industrial
applications, and in the future, will they increasingly be sup-
posed to work also in human centered environments. If robots
are expected to interact in an unstructured household instead
of working in a well-known factory environment, problems
become more complex: In order to fulfill requirements of
everyday activities, a wide variety of complex questions have
to be solved. The robot has to cope with unfamiliar situations
and unknown options for interaction so that behavior and
actions have to be highly adaptive. Consequently, common
methods of robot programming are not directly applicable in
the above mentioned scenario.

To address these problems, the concept of Programming
by Demonstration (PbD) has become a common approach.
It has developed rapidly since its origins in the mid-1980s.
The work of Halbert [1], shows how to program a software
system by example. During the 90ies, similar approaches
transferred into the robotics domain were presented [2], [3],
[4]. PbD is a technique that enables teaching a robot new
skills and behaviors by demonstrating actions on concrete
examples. It enables the robot to learn continuously from
human observation in scenes of everyday life. Using parame-
terizable representations of the observed data allows applying
the demonstration to new situations. Ultimately, after setting

up the PbD System, advanced programming skills will be
not any longer needed because also untrained users are able
to teach new skills to the robot by demonstration.

The development of suitable action representations and
algorithms for PbD has been a key research topic for the last
decades. Neuroscientists, computer scientists and engineers
alike have been working on relevant problems concerning
this issue. Schaal et al. [5] discussed imitation learning as
methodology for PbD from a computational point of view.

Ijspeert et al. suggested nonlinear dynamical systems for
the representation of a demonstrated motion [6], called
dynamic movement primitives (DMP). Following this ap-
proach Gams et al. used a two-layered dynamical system
that allows to extract both the frequency and the waveform
of the demonstration signal to learn periodic tasks on a
humanoid [7]. Ernesti et al. enrich these DMP formulation
by extending the canonical system by one dimension using a
two dimensional oscillator, which unifies the representation
of a periodic movement and its transients [8]. Regarding
various perturbations while execution, the basic formulation
can be modified in additional ways. Two exemplary works in
this direction are an approach that enables the generalization
of DMPs to new situations using the available training
movements and the goal of the task [9] and another approach
using nonlinear dynamical systems with gaussian mixture
models, which can respond immediately to perturbations
encountered during the motion [10].

In contrast Ude et al. [11] suggested using b-spline
wavelets as the representation of whole-body motion. Several
approaches make use of Hidden Markov Models to learn and
reproduce demonstrated actions [12], [13], [14].

Besides kinematic representations, further problems have
to be addressed, in order to build a system capable of
interacting in unstructured environments. Among them, the
representation for the manipulation of objects in the en-
vironment is a crucial factor. In order create trajectories
for executing these tasks, position and orientation of the
manipulated object must be determined [15], [16].

Another key question is how to decompose the observed
task into a set of sub-actions. Such a subdivision can then
be utilized to formulate motion primitives for the execution



on the robot [18], [19], [20], [21], or as shown by Kulic
et al. [22] even for incremental learning new templates in
real-time.

An important principle, known as affordance and elemen-
tary for the proposed approach, is the relationship between
objects and particular actions. Each object of a certain type,
has a quality, which allows performing only specific actions
using these objects. A framework for the action-centered
representation of these correlations at different levels of hi-
erarchy is presented by the formulation of the Object-Action
Complex (OAC) concept [17]. OACs describe how a robot
has to perform an action with an object to achieve a given
goal. They take several sensor channels on different levels
into account, ranging from sensorimotor- to semantic level.
Examples of the sensorimotor level are joint angles or forces
acting on the tool center point and, on the semantic level, the
label of an object. Further, all OACs have preconditions and
a prediction function associated with them, that encodes the
belief how actions will impact on the world changes. This
prediction is called the effect of the OAC.

Another preliminary method for our work, called ”seman-
tic event chain” (SEC) [23], [24], employs the spatial relation
between objects for the subdivision of the demonstrated task.
This approach makes use of the visual perception, more
precisely, stereo and optical flow information. Hence, it is
limited to demonstrations which can be reliable captured
by image processing, in particular fulfill the conditions of
image segmentation. The basic idea of the SEC is to extract
the change of contact relations, i.e. all moments (keyframes)
when any object comes into contact or loses contact with
another object. Analogous to OACs, the method is based on
the affordance principle, in particular the linking of objects
and object relations to actions. Therefore, the linking of both
methods is evident.

II. OVERVIEW

In this paper, a novel concept for the automatic adaptive
reproduction of human demonstration on a robot is pre-
sented. The goal is to enable the reproduction of beforehand
completely unknown complex tasks with multiple object
interaction. Knowledge about these tasks is acquired by
observation of the human demonstration and the involved
objects. This observation is further processed to determine
distinct sub-actions and object relations. These sub-actions
are associated with Object-Action Complexes (OACs) [17],
which are organized in a prior known library. These OACs
represent basic object manipulation and interaction skills.
The association is done by utilizing the observed world states
to select OACs with matching preconditions and effects.
Using these associations the robot can reproduce the before
unknown action sequence.

III. OUR APPROACH

In this section, we will present in detail the components of
the proposed system for automatic adaptive action sequence
reproduction. The proposed system mainly consists of three
components (see Fig. 1): demonstration, representation and

execution. The demonstration component is responsible for
the acquisition and segmentation of motion data. The rep-
resentation component contains the object-action complex
library and the association of the segmentation with specific
object-action complexes. The execution component provides
the adaptive reproduction of the observed action sequence
on a robot.
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Fig. 1. System overview: The system consists of 3 components: demon-
stration, representation and execution.

A. Acquisition and segmentation of motion data

First, the human demonstration needs to be captured. The
demonstrations are usually complex tasks like preparing a
dough, which consist of several sub-actions. The trajectories
of all components of the demonstrations need to be recorded.
There are several ways to capture this data like inertial
motion capture [25], marker-based motion capture with
several cameras [26] or even 3D-based markerless motion
capture [27]. Since this is a intensively researched field itself
and outside the scope of this paper, a robust and precise
marker-based motion capture system has been chosen in our
experiments.



In order to extract the required trajectories of all com-
ponents with this motion capture system, the agent and
all involved objects have markers attached to them (see
Fig. 2). To distinguish between the markers in the post-
processing all markers are grouped by the object they are
attached to. Further, the groups and the markers themselves
are labeled. The labeling is important for the selection and
parameterization of the object-action complexes, which are
discussed in section III-B.

To segment the recorded action sequence we employ a
method similar to the method presented in [23] by Aksoy et
al. However, the main strategy remains the same. Instead of
using a 3D vision system the demonstrated task is observed
by an marker-based motion capture system. Consequently,
the calculation of the object relations is not based on color
segmentation but on the 3D Euclidian distance of objects
over time. In this work, we call the resulting system for task
segmentation Automatic Action Segmentation (AAS).

The environment is represented at any time for our ap-
proach as object relations. All object relations at a keyframe
are considered as the world state. Contact changes between
objects lead to a different world state. When the world state
changes, there has been a change on the object relations,
which in turn means that an action with an specific effect
has happened. Thus, we are detecting actions by their effects
on the environment. This approach is therefore model free in
case of the actions and requires a simple spatial representa-
tion and a label for later processing for the objects. However,
semantic information is not necessary.

The stated object relation is only of one kind at the
moment: an object touches another object. One object can
touch a set of other object, including the empty set. In
contrast to the related work of Aksoy et al., we utilize the
object distances to determine the keyframes instead of an
exact graph-matching algorithm that extracts the main graphs
of a sequence of graphs.

Further, Aksoy et al. use visual color segmentation and
overlapping of color regions to detect changes of the ob-
ject touching-relations. While this approach is flexible and
does not require any prior knowledge about the objects,
it lacks in robustness and precision. Therefore, we use
marker trajectories from motion capture data to detect object
touching-relations. All touching-relations at one frame are

Fig. 2. Left: Human demonstrator with markers attached to him and all
objects while wiping a tray. Right: The same frame of the demonstration as
the 3D view of the reconstructed marker groups (different colors).

called the world state. The marker positions are the basis
for all calculations. These markers are placed on the objects
such that they are visible at all time. However, they do
not represent the shape of the object. Thus, the distance
calculations on the markers only may not detect all touching-
relations between objects.

For calculation of the keyframes we use the markers
mG∈M,k={1...|G|},i={1...l} ∈ R3 and the following con-
straints, where M is the set of marker group sets and l is
the length of the trajectory:

Whenever
i) a marker mG1,k,i is sufficiently close enough to a

marker of another object mG2,j,i,
ii) and the change of distance |mG1,k,i−mG2,j,i|′ of two

markers is sufficiently small for a minimum number
of frames n,

the transition non-touching → touching is made:

|mG1,k,i −mG2,j,i| < d
∧ |mG1,k,i −mG2,j,i|′ < v

∃n0 ∈ {1 . . . N}
∀i ∈ {n0 . . . n0 + n} ,

(1)
where n0 is the frame with the non-touching → touching
transition, constant d is the distance threshold, constant v is
the distance-change threshold

The two markers are labeled as ”touching” from frame
n0 on until one of the previous conditions is false in the
following n frames:

|mG1,k,i −mG2,j,i| > d
∨ |mG1,k,i −mG2,j,i|′ > v

∃n1 ∈ {1 . . . N}
∀i ∈ {n1 . . . n1 + n} ,

(2)
where n1 marks the frame of the end of the touching-relation.

This way, passing other markers does not lead to touching-
relations and noise in the data does not break up touching
relations for a short time (see Fig. 3). At this point, for
every change of the world state a new keyframe will be
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inserted. However, this leads to oversegmentation of the
action sequence with misleading keyframes. Some of these
keyframes are separated by a relatively small number of
frames, e.g. if an object is dropped onto another object. Since
the demonstrated sub-actions in the scope of demonstrations
for a robot always have a certain duration, these keyframes
do not represent the desired segmentation. This can be solved
by merging keyframes with only a few frames between them
into one single keyframe. To achieve the merge the last
keyframe of this group of keyframes and its relations are
used. The previous keyframes of the group are discarded. A
keyframe belongs to a group if the time difference to any
other keyframe of the group is below a threshold. Proper
chosing of this threshold is crucial for a correct segmentation.
Too high and too low thresholds can both lead to additional
false segments or missing segments depending on whether a
touching relation started or ended.

With this segmentation method, the keyframes for the
complete trajectory are calculated. In every keyframe, at least
one object relation changes from touching to non-touching or
vice versa. The corresponding object relations are stored for
every keyframe and represent the current world state. In Fig.
3 the method’s results are demonstrated in a simple example.

B. Object-Action Complex (OAC) Library

After applying the automatic action segmentation (see III-
A), the demonstrated action sequence is subdivided into sev-
eral sub-actions. However, the robot has no knowledge from
the observation about how to reproduce the action sequence
or any of the sub-actions. Although the trajectories of the
markers and the involved objects are known, simply imitating
the human demonstrator does not work. This is because
the kinematics of the human and the robot usually are not
interchangeable and because the objects are represented only
by their attached markers. The robot has no knowledge about
the shape of the objects and how to interact with them from
motion capture data. Additionally, the used motion capture
data does not contain any information about other perception
channels, like the force applied during the demonstration. To
enable the robot to reproduce the observed tasks a manually
designed library of OACs is used. Though, only basic actions
are stored in the library and complex tasks are observed.

The next step is to merge the gained information from
the automatic action segmentation with the OAC library.
The segmentation divides the action sequence in sub-actions,
though, there is no association between the sub-actions
and the OACs yet. Fortunately, the segmentation provides
naturally for each sub-action a keyframe at the beginning
and the end of the sub-action. At these keyframes, the current
world state is stored. An OAC usually does not depend on the
entire world state. Thus, a subset of the world states of the
two keyframes is used as the preconditions and the effects
of a sub-action.

There is a difference between the preconditions and effects
of the OACs and two consecutive keyframes. The keyframes
always contain instances of an object in the object relations,
while on the other hand the OACs may contain variable terms

in some or all the preconditions and effects, depending on
the selected OAC. For instance, the grasping OAC has the
following preconditions and effects:

Pre : hand↔ nothing
Effect : hand↔ object ∈ Graspable Objects

, (3)

where ↔ denotes a touching relation. Thus, to find the
matching OAC, the object instances of the keyframes have
to be validated against the compatibility with the OAC in
question.

The world states of the segmented sub-action are utilized
to perform a search within the OAC library to find a matching
OAC by compairing the preconditions and effects of all
OACs in the library with the previous and next world state
of the segmented sub-action. It is important to notice, that
OACs usually only depend on a small part of the world
state and the remainder object relations are irrelevant. Hence,
the object classes of the preconditions and effects of the
OACs are checked against the specific object instances of the
world states of the segmented sub-action for compatibility.
If all preconditions and effects of an OAC are part of the
segmented sub-action’s world state, a link between the sub-
action and the OAC is created and stored.

With the sequence of OACs it is possible to generate a new
OAC that contains this sequence. The needed preconditions
and effects of this new OAC can be calculated from the
OAC preconditions and effects in the sequence. The complete
method for this is shown in algorithm 1. The algorithm is
divided into two parts: the calculation of the preconditions
and the effects. The preconditions of sub-OACs are precon-
ditions of the new OAC, if they are not effects of previous
sub-OACs. The effects of the new OAC are the changes of
the world state before the new OAC to the world state after
it.

IV. EXPERIMENTS

In this section, we will explain the experimental setup for
the complete system and present an exemplary scenario for
the application of the system.

A. Experimental Setup

The system for reproduction of the action sequence consist
of two major hardware components. In this section, first the
motion capture system and the second the humanoid robot,
will be explained

1) Marker-based motion capture system: For motion cap-
turing, we are using a multi-camera system with 10 cameras
equipped with infrared lights and infrared filters. The human
demonstrator has reflective markers attached to the torso, the
arms and hands, and the head. On every object,at least three
markers are asymmetrically placed to correct identify the
pose and avoid instabilities in the assignment of markers.

2) Humanoid robot Armar-III: For the reproduction of the
action sequence, we are using the humanoid robot ARMAR-
III [28]. The kinematic chain of the robot consists of the
following subsystems: As a base, it has a holonomic platform
with three omniwheels. On this platform, a torso with three



Input:
oacs := list of (p:preconditions, e:effects)
ws := world state before new OAC
we := world state after new OAC

Result: list of preconditions and list of effects for new
OAC

foreach oac ocurrent in sequence do
o← ocurrent
preconditionRequired← true
foreach oac ocurrent in sequence before o do

ob ← ocurrent
if ob.e ∩ o.p 6= {∅} then

preconditionRequired← false
end

end
if preconditionRequired = true then

add o.p to pnew
end

end
foreach object os in ws do

foreach object oe in we do
if os = oe then

add (oe.relations \ os.relations) to enew
end

end
end
return pnew and enew

Algorithm 1: Calculation of preconditions and effects of
new OAC

degrees of freedom (DOF) is placed. Like a human, it has
two arms. Each of them consists of seven joints and has a five
finger pneumatic hand attached to it. The head kinematics is
divided into the neck joints with 3 DOF and the two eyes
with a common tilt joint and independent pan joints, resulting
in 10 DoF in total. The visual perception of the robot is
accomplished with a foveal and a peripheral stereo vision
system.

The robot is equipped with a 6D-force-torque-sensor in
both wrists to measure the force applied to the hand. This
sensor is used in most OACs as a state trigger, trajectory
modifier to reduce applied forces or merely as a trigger for
aborting the OAC as a safety precaution.

3) Environment: The experiment was conducted in a
kitchen environment. The robot is standing at a table with
several objects on it: two cups of different color, one mixing
bowl and a mixer. The cups are in the demonstration filled
with a big marker to symbolize the liquid. For the reproduc-
tion a robot friendly liquid replacement, i.e. small balls, are
used.

B. Exemplary Scenario

Analogously to the environment, we chose a task that
belongs to the kitchen scenario: preparing a dough. This
a complex task consisting of several OACs with multiple
objects involved. It requires and shows all the components
of our approach.

The execution of the task by an human demonstrator while

being observed by the motion capture system is realized by
the following sequence of commands:

1) Pour the liquid one into the orange bowl
2) Pour the liquid two into the orange bowl
3) Use the electric mixer for mixing the dough

This is one possible description for the OAC sequence that
probably would be sufficient for most humans. It is written
in a way that some important data for the execution is not
explicitly described. A human infers the missing data from
the context. However, a robot cannot execute this plan since
it has a different view on the actions pouring and mixing.
The OACs used with this system focus on moments when
objects touch each other or stop touching. Thus, the AAS
extracts the segmentation that is shown in Fig. 4. The figure
shows the whole process of reproduction of action sequence
of the described exemplary scenario. The left column shows
the demonstration by a human at the keyframes that are
extracted by the AAS. The graphs in the middle column
represent the world state at each keyframe. Each node of
the graph depicts an object and the connections illustrate the
touching-relations between objects. Black connection lines
depict already existing relations, while red solid lines stand
for a new touch-relation, and dotted lines for fading touching-
relations. The grey boxes in the right column show the
selected OAC with the matching constraints. The wildcards
in the OAC constraints are filled with the specific instances
for this action sequence, which result from the previous and
next world state as illustrated with the black arrows. The
pictures on the far right show the robot while executing the
action sequence.

During the reproduction of the dough preparation the robot
needed four different OACs, some of them multiple times:
Grasping, pouring, placing and mixing. This led to a new
OAC with the following preconditions:
• Left hand↔ Nothing
• Right hand↔ Nothing
• Liquid One↔ Red cup
• Liquid Two↔ Green cup

and the resulting effects:
• Right hand↔Mixer
• Liquid One↔ Orange bowl
• Liquid Two↔ Orange bowl
• Mixer ↔ Orange bowl

The new OAC is inserted into the OAC library and available
for future executions.

V. CONCLUSION

In this paper, we presented a system that first enables
robots to observe human interaction with objects in unstruc-
tured environments. It then decomposes demonstrated tasks
into sub-actions that can be mapped onto the entries of an
action library. Finally, action sequences are parameterized for
the current situation and can be reproduced on a robot. The
feasibility was shown in an exemplary scenario for preparing
a dough.



It can be summarized that our approach performs well in
the chosen scenario, which covers frequent actions in the
kitchen domain. The following desirable features that are
circumvented or just not supported by other approaches are
natively supported by our approach: Due to the fact that AAS
relies on world states instead of commonly used agent poses
we achieved time-invariance and pose-invariance. Further-
more, it is invariant to the kinematics of the demonstrator.

These features empower our approach to reproduce tasks
that were previously completely unknown to the robot by au-
tomatically splitting them up in known sub-actions. However,
these sub-actions need to be known beforehand and are the
backbone of this approach. Learning these sub-actions only
from observation is, even for a human, a challenging task.
Humans usually need to evaluate them before achieving com-
plete comprehension and take at least the haptic perception
into account as well. To teach the robot these sub-actions,
more specialized approaches might be required, for instance
a multimodal approach integrating several sensor channels.

Future work could concentrate on integrating an interactive
sequence completion for unknown sub-actions, where the
robot signals that he could not comprehend a demonstrated
sub-action and asks for user interaction to help him under-
standing it. The segmentation algorithm, in particular the
keyframe merging, could be extended through automatic
adaptation of the hyperparameters to reduce the dependency
on correct parameterization.
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[16] A. Ude, D. Omrčen, and G. Cheng, “Making object learning and
recognition an active process,” International Journal of Humanoid
Robotics, vol. 5, no. 2, pp. 267–286, 2008.
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Fig. 4. Demonstrated action sequence at the detected keyframes (left column), the extracted world state at each keyframe (middle column), and the
selected OACs from the two corresponding world states, which are executed on the robot (right column).


