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Abstract—Understanding human actions is an indispensable
capability of humanoid robots which acquire task knowledge
from human demonstration. Segmentation of such continuous
demonstrations into meaningful segments reduces the complexity
of understanding an observed task. In this paper, we propose
a two-level hierarchical action segmentation approach which
considers semantics of an action in addition to human motion
characteristics. On the first level, a semantic segmentation is
performed based on contact relations between human end-
effectors, the scene, and between objects in the scene. On the
second level, the semantic segments are further sub-divided based
on a novel heuristic that incorporates the motion characteristics
into the segmentation procedure. As input for the segmentation,
we present an observation method for tracking the human as
well as the objects and the environment. 6D pose trajectories of
the human’s hands and all objects are extracted in a precise and
robust manner from data of a marker-based tracking system. We
evaluated and compared our approach with a manual reference
segmentation and well-known segmentation algorithms based on
PCA and zero-velocity-crossings using 13 human demonstrations
of daily activities. We show that significantly smaller segmentation
errors are achieved with our approach while providing the
necessary granularity for representing human demonstrations.

I. INTRODUCTION

Research efforts in humanoid robotics have been dedicated
to the development of sophisticated systems that can mimic
the functionalities of a human. To tap this huge potential,
humanoid robots are to be endowed with cognitive abilities
for the acquisition of novel motor knowledge and the adap-
tation of this knowledge to unseen situations in order to
account for dynamic changes. An intuitive way to approach
this challenge is to acquire motor knowledge through the
observation of humans and to transfer this knowledge to robots.
In this context, an emerging paradigm is programming by
demonstration [1], which in recent years progressed to the
more biological-oriented term of imitation learning. A central
concept which provides the basis for numerous imitation
learning approaches has been the concept of the motion prim-
itives. Motion primitives are units which incorporate a control
policy for the execution of simple, basic motion patterns.
Commonly, it is assumed that these motion primitives form
the human motion repertoire from which complex movements
are generated, adapting and sequencing these primitives in
a task-dependent way. To provide data from which a robot
can learn these motion primitives, methodologies have to be
developed to allow the automatic segmentation of continuous
human motion.
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Fig. 1. A human demonstration of a complex task (top) is being recorded with
a marker-based motion capture system. These marker-trajectories are converted
into 6D object pose trajectories (middle), which serve as input for the proposed
segmentation algorithms. The result of the segmentation (bottom) contains
segments with distinct object-relations on the top-level and sub-segments with
distinct motion characteristics on the bottom-level. The subsegments in this
figure are labelled manually to illustrate the meaning of the subsegments.

In particular, a segmentation procedure that provides a
sequence of reliable segmentation points is needed. These
segmentation points should denote changes in the scene which
are caused by the enclosed manipulation actions. However,
such points are difficult to extract from mere human motion
data. Therefore, we consider in this work also motion data of
the manipulated objects. In addition, we also wish to determine
smaller segments depending on the elements the manipulation
action is composed of.

To develop such a segmentation method which satisfies
the demands mentioned aboves, in this work we present a
hierarchical segmentation approach. Additionally, it should
serve as an automatic tool to enrich a motion library with
semantic information and more granular motion element. On
the higher level a semantic segmentation is performed based
on the contact relations between the human end-effectors, the
scene and between objects in the scene. To enable the capturing
of these relations, a method has been developed which allows
the robust and accurate acquisition of human and object
motion. On the lower level, the semantic segments are further
analyzed in order to identify motion primitives. The proposed
segmentation approach constitutes a crucial component in a
motion learning framework.

The paper is organized as follows: Section II provides
an overview of related work. In Section III, the acquisition
of human motion data featuring demonstrations of complex
manipulation tasks is described. In Section IV, the proposed
action segmentation method procedure is introduced. The



approach is evaluated in Section V. Section VI summarizes
the work and discusses future extensions.

II. RELATED WORK

In order to be able to understand and analyse complex
human motor behaviors, demonstrations of these behaviors
have to be decomposed into meaningful segments which de-
note manipulation actions as well as the corresponding action
primitives. For this purpose, in the field of robotics, a large
number of different approaches have been proposed mainly
in the context of imitation learning. In general, segmentation
algorithms can be categorized into unsupervised and super-
vised methods. Unsupervised methods do not require any prior
knowledge of the actions which are featured in the behavior to
be segmented, and, thus, a temporal segmentation of continu-
ous human movements can be performed in an online manner.
According to this methodology, in [2], an approach has been
introduced based on the joint velocities. Segments are enclosed
between points where the mean squared velocity falls below
a predefined threshold. In [3], this method has been extended
in a way that this critical threshold is determined based on the
scaling of the current mean squared velocity. In addition, tactile
feedback has been incorporated in order to detect changes in
the contact relations between human and environment while
the human is in motion. In [4], a method based on zero
velocity crossings is proposed. Using this method, segments
are denoted by points where in a sufficient number of joints
the movement direction is changing. A probabilistic approach
has been proposed by [5] using Principal Component Analysis
in order to identify segments represented in a low-dimensional
space. The reconstruction error for newly observed movements
indicates whether the observation belongs to a current segment
or denotes the beginning of a novel one. In [6] a framework
for learning actions from observation is proposed, in which
also the agent and the objects are tracked and state changes
considered. An interaction learning system is proposed in [7],
which uses the relative velocity between an object and the
hand as the segmentation feature. However, both works do not
consider motion characteristics for segmentation.

In contrast to unsupervised approaches, the segmentation
with supervised methods is based on previously known seg-
ments mostly represented in a generalized form. Regarding the
learning of human actions, a common strategy is to use the
same representation for the learning as well as segmentation
and recognition of actions and motor primitives.

In [8], [9] and [10], segments are identified and represented
as states of an Hidden Markov Model (HMM). In [8], the
segmentation points are derived by optimizing the cost path
using a modified Viterbi algorithm. To gradually verify and
to refine the segmentation, prior knowledge is introduced in
the form of HMMs representing known segmented movements
which are grouped by applying a clustering procedure. In [9]
the authors propose a Mimesis-model that abstracts whole
body motion patterns as symbols and allows segmentation
and recognition of motions. Though, they state it is only
applicable to simple motions. An alternative approach using
dynamical systems is proposed in [11]. Linear time invariant
dynamical systems are designed and trained to represent spe-
cific drawing primitives. For novel observations, parameters
for these systems are estimated. Based on the parametric

Fig. 2. Left: Image of a real object with attached reflective markers. Right:
A visualization of the corresponding 3D mesh model with attached virtual
markers (blue/green spheres).

error and the corresponding approximation error segments are
identified. In [12], latent force models are used in order to
segment human movements. Multiple dynamical systems are
used to encode the relations between a latent force space and
the joint movements. Smooth trajectories in the latent force
space indicate possible segments. However, the segmentation
result strongly depends on the dimensionality of the force
space. A further approach which uses the Dynamic Movement
Primitives (DMP) for segmentation and recognition of basic
movements is introduced in [13]. Based on a library of
previously trained DMPs representing various basic actions,
the observation of an action is encoded as a novel DMP. If this
DMP matches an element in the library a segment is found.
Otherwise, the novel DMP is used to update the library.

Compared to unsupervised methods, supervised approaches
yield more accurate results for movements which are al-
ready known to the system. To ensure the robustness of
these approaches the prior knowledge should consider seg-
ments which can be sufficiently discriminated, and, thus,
found segments incorporate a certain complexity. Therefore,
unsupervised methods are better suited for a fine-granular
decomposition of a manipulation action in motion primitives,
especially if the primitives are new to the system. However,
finding the segmentation parameters such as thresholds which
yield an optimal result is difficult. To our best knowledge,
none of the approaches above provide a solution for motion
segmentation which takes into account both the semantic of
the task as well as motion characteristics of the demonstration.
With our hierarchical segmentation approach we pursue novel
segmentation strategies which consider both semantic and
motion information of human demonstration (see Fig. 1).

III. ACTION DATA ACQUISITION

Fig. 3. Mapping of observed markers (blue spheres) attached to the cup to
virtual markers on the model. Both observed and virtual markers are aligned
(green/blue spheres in red circle). The visualization of the cup’s 3D mesh
shows the 6D pose of the perceived object.



In this section, we will address how action data can
be captured in a reliable way. In order to capture human
demonstrations a variety of different manipulation actions with
a high accuracy and at a high resolution, we employ a marker-
based motion capture system [14]. The demonstrations involve
not only a human, but also the objects, which are manipulated
by the human.

To be able to capture both, markers have been attached
to the human subject as well as to objects of interest located
in the current scene (see Fig. 2). For simplicity reasons, only
the hands of the human are considered during the capturing
process and are treated as rigid bodies similar to the objects.
On each object and hand at least three markers are attached,
although more markers increase the robustness in case of
occlusions. All markers are labeled and grouped according
to the object they belong to. The motion capture data contains
Cartesian space trajectories of all markers. In our previous
work [15], we used only the trajectories of marker groups for
the segmentation. However, the arrangement of the markers
do not sufficiently describe the shape of the object, and,
thus, the pose of the object can not be inferred based on
the mere marker positions. To deal with these shortcomings,
we convert the trajectories from a marker representation to a
6D pose representation for each object with the help of the
Master Motor Map framework [16]. The first component of
the representation are 3D mesh models. Thus, we create 3D
mesh models of each object with a 3D object scanner [17] or
a common 3D modeling tool and attach virtual markers on the
model (see Fig. 2). The resulting object representation consists
of 3D mesh model of each object as well as the positions of
all markers attached to this object. This information allow to
calculate the 6D object pose. For this point set registration
problem we applied the approach presented by Besl in [18].
In Fig. 3 the mapping of observed and virtual markers is
visualized.

To retrieve the 6D pose trajectory for an object, the
transformation is calculated for each frame and applied to the
base pose of the object, which is usually the identity. This
conversion is done for all captured objects, which leads to an
accurate representation of the scene during the demonstration.
In our applications, we use trajectories with at least three
markers for each object in any frame.

IV. HIERARCHICAL ACTION SEGMENTATION

We propose in this paper a two-level hierarchical segmen-
tation method for segmenting a complex task into meaningful
segments. On the top level, segments are identified based
on a semantic criteria. On the bottom level, segments are
identified on a heuristic for motion characteristic. Semantic
segments are identified based on contact relations between
the human end-effectors and objects in the scene. This top
level of segmentation is performed based on the captured
6D trajectories of objects and end-effectors as well as on
the 3D object models. On the bottom level, the resulting
semantic segments are further analyzed regarding their motion
characteristics to identify a sequence of motion primitives.

A. Semantic Segmentation based on Object Contact Relations

First, the human demonstration is segmented based on the
6D pose trajectories of each object while making use of the

3D model information of each object. The segmentation is
grounded on the spatial relations between the objects. A similar
approach was proposed by Aksoy et al., which uses RGB
stereo camera [19], [20] or RGB-D [21] images as input.
While this approach is model-free, it does not provide 6D
trajectories of human end-effectors or objects. The authors
estimate contacts between objects by recognizing overlapping
color blobs. In our previous work in [15], we utilized only
marker distances for contact detection in demonstrations. As
mentioned in Section III, the shape and the pose of the object
are not sufficiently represented by the markers alone. A seg-
mentation based on the distances between the objects requires
the use of high distance thresholds to detect contact points
that are far from the markers. This reduces the robustness of
such a method since objects in the demonstrations need to
have a relatively large minimum distance between each other.
The introduction of a 3D mesh model as object representation
instead of markers allows the use of sophisticated mesh-based
collision detection algorithms, such as the one described in
[22], to accurately calculate the distance between objects and
to detect contacts/collisions between them.

The demonstration is segmented by detecting key frames
which are extracted based on the change of relations between
objects and the human hands, which correspond to the end-
effectors in our manipulation tasks. We consider only contact
relations, where contact(A,B) denotes contact between object
A and B. Other relations like on or in ground on such
contact relations and are not relevant for our segmentation
method. For future extension towards symbolic planning, the
incorporation of further relations might be useful. The relation
contact(A,B) relies on the closest distance between any part
of the involved objects A and B. For each frame of the
demonstration, the relations between all objects are calculated
and key frames are stored whenever the relation between two
object changes its status. contact(A,B) returns true if the
distance falls below a predefined threshold. To deal with noise
on the distance measure, we use hysteresis on the threshold,
which is increased when a contact has been detected in the last
frame. This results in a sequence of key frames. Additionally,
the world state is stored together with every key frame. This
world state is the set of all relations between all objects. It
describes the current status of the scene and can be used for
association with known actions (as described in [15]). As stated
before, every relation change leads to a key frame. However,
not all actions correspond to only one relation change. For
example, the action of pouring liquid (L) in a cup (C) into a
bowl (B) can be associated with two relation changes (under
the assumption that liquid can be tracked):

contact(L,C) ∧
→

!contact(L,C) ∧
!contact(L,B) contact(L,B)

where L stands for liquid, C for cup and B for bowl. Hence,
key frames need to be merged into groups of key frames
that semantically belong together. For most actions, these
key frames appear with a small delay between each other as
it is the case e.g. for the action of dropping an object into
another. A simple way to cope with this is using the temporal
displacement of two key frames to merge them once this
distance is too small. State changes are always instantaneous,
although e.g. pouring might seem to take time. However,
the change of the contact relation does not take time. If the
pouring would take noticeably long, it would result in two



Fig. 4. Stages of demonstration capturing and processing: The human
demonstrator with attached markers on the objects (left); marker group
representation (middle); 3D mesh models with applied 6D object pose (right).

key frames: a first key frame when the liquid gets in contact
with the target container and a second key frame when the
liquid loses contact with the source container.

B. Segmentation based on Motion Characteristic

This first level of segmentation described above results
in a segmentation of the human demonstrations in semantic
segments, that have observable changes in the world state.
However, some actions have unobservable effects, even for
a human. For example, the effect of shaking two transparent
liquids in a bottle cannot be observed visually. In this and
other examples, such unobservable effects are relevant for
segmentation and finally understanding the demonstrated task.
The number of these unobservable effects for many tasks
can exceed the number of observable effects. However their
detection based on current state of the art methods and sensor
technologies is challenging.

The previously described method can only detect moments
when two objects make contact with each other. The afore-
mentioned effect and therefore the state change cannot be
detected. To this end, we extend the segmentation from the
previous section with a subsegmentation that extracts motion
parts within a semantic segment based on the trajectory shape
and the motion characteristics. In other words, we take the
detected semantic segments as the input for the bottom-level
and divide them further. The goal of the subsegmentation is to
split up the semantic segments into smaller parts that contain
motions with different motion characteristics and potentially
represent the different motion primitive within a semantic
segment. Several motion-based segmentation methods could
be used for this subsegmentation. In this work, we use a
heuristic that incorporates the characteristic of a motion into
the approach. To capture the characteristic of a motion, our
approach uses as a basis the dynamics of the motion, i.e. the
acceleration values of the trajectory.

There are two fundamentally different ways to segment
motion data. One is to find key frames that meet a specific
criteria, and the other one is to search for meaningful segments.
Our approach lies in between. The approach searches for key
frames that maximize the difference of the trajectory parts left
and right of this key frame. As such, the approach differs
from the pure key frame search since the key frame itself
is unimportant. It also differs from segment search because
it does not require the complete demonstration segments to
be known in advance. In short, our approach segments the

trajectory in most distinctive parts. To find the key frames,
the demonstration trajectory of is analyzed recursively. On
every recursion level, the given trajectory segment is searched
sequentially with a predefined step size for the key frame, that
divides the trajectory best. Subsequently, the segments left and
right of this key frame candidate are analyzed again in the
same manner until the segment size falls below a threshold or
no additional segments with a sufficiently good quality can be
found. The whole approach is described in Algorithm 1.

To define the quality of a frame, which is needed to decide
whether a frame is a key frame, we introduce first the following
terms:

Ad(t) = |ad(t+ 1)− ad(t)| (1)

sl,d(tc) =

tc−1
∑

t=tc−
w

2

Ad(t)

(

Ûl

Ûr

)2

(2)

sr,d(tc) =

tc+
w

2
−1

∑

t=tc

Ad(t)

(

Ûr

Ûl

)2

, (3)

where ad(t) is the acceleration vector of dimension d at
timestamp t, d is the dimension of the trajectory, sl,d(tc) is
the score left of the key frame candidate, tc is the timestamp
of the key frame candidate, w is the window size left and right

of the key frame candidate that is analyzed, Ûl and Ûr is the
peak-to-peak amplitude respectively left and right of the key
frame candidate. Eq. (2) calculates the score of the segment
left of the key frame by calculating basically the length of
the function. Eq. (3) does the same for the right side of the
key frame. To also consider the amplitude of the acceleration,
the score is multiplied with the squared relation of the peak-
to-peak distances left and right of the key frame candidates.
Finally, the quality qd of a key frame candidate is then defined
as:

qd =

{

sl,d/sr,d sl,d > sr,d
sr,d/sl,d sl,d ≤ sr,d

. (4)

Until now the qualities for each dimension are normalized to
their amplitudes. However, the amplitude of one dimension can
be small compared to another dimension. Since motions in a
dimension with overall low amplitudes are not as important as
another dimension with high amplitudes, the qualities for each
dimension are aligned with the maximal peak-to-peak distance

Ûd of all dimensions:

q̂d = qd · z

√

√

√

√

Ûd

max
d

Ûd

, (5)

where z is a scalar to influence the weight of the normalization.
The best q̂d of all frames and dimensions is selected as a
key frame with the quality q, if the value does not violate
a quality-threshold or a minimum segment size to avoid
oversegmentation. The idea for this heuristic is that motions
with a different characteristic, e.g. smooth circles, intense
shaking, pouring, etc. have a different acceleration profile and
therefore a different shape. The heuristic primarily measures
the length of the acceleration curve and normalizes it with the
amplitude of the segment.



Algorithm 1 Motion Characteristic Segmentation Algorithm

function FINDKEYFRAMES(kf, tl, tr, lmin)
// kf: in-out parameter; intially empty key frame list
// tl, tr: timestamps of current segment borders
// lmin: minimum segment length
for t := tl + lmin to tr − lmin ; t += 0.01 do

for d := 0 to dimensions do
qn ← CALCQUALITY(t, d)
if qbest < qn then

qbest ← qn
tbest ← t

end if
end for

end for
if qbest > λ then

kf.INSERT(tbest,qbest)
FINDKEYFRAMES(kf,tl,tbest,lmin)
FINDKEYFRAMES(kf,tbest,tr,lmin)

end if
end function

V. EXPERIMENTS AND EVALUATION

In this section, the experimental setup for data acquisition is
described and the results of conversion of marker positions into
6D object poses is discussed. We compare the segmentation
results of our approach with other segmentation methods based
on a new segmentation metric. Using this metric we compare
our approach to manual segmentation and other segmentation
algorithms. We describe the experiments we conducted and
results we achieved by using the hierarchical segmentation
based on object contact relations and the subsegmentation
based on shape and motion characteristics.

A. Experimental Setup

The marker-based motion capture system consists of 10
cameras for the observation of the scene, in which all objects
are common rigid household objects that have at least three
markers attached to them in an asymmetric arrangement. To
capture human motion during the demonstration, only markers
at the hand were considered where the hands were treated
as rigid bodies as well. The motion capture system contains
models of the spatial marker relations of all objects allowing
the automatic labeling of the markers (see Fig. 4, middle). For
every object, a 3D mesh model was either created with a 3D
scanner or by hand and extended with virtual marker positions
(see Fig. 2).

B. Segmentation Metric

To compare our approach to the other algorithms, we
propose a metric that measures the error of the segmentation
in square seconds compared to a reference segmentation. Let
Kr be the set of key frame of the reference segmentation
and Kf the found key frames of the algorithms. The metric
assigns for each kr ∈ Kr the closest key frame available in
Kf . Each key frame can only be assigned once and measures
the squared error to the reference key frame. The maximum
allowed distance for a correct key frame to the reference key
frame was chosen to be 1 second, otherwise the key frame is
considered missed. For every missed key frame and for each

false positive key frame of the algorithms, a penalty p = 7 s2

is added, so that completely wrong key frames are severely
penalized. In summary, the metric we use for comparison is
given as:

e = (m+ f) · p+
∑

i

min
j

(kr,i − kf,j)
2, (6)

where m is the number of missed key frames and f the number
of false positives.

C. Experiments

To test our approach we recorded the following demonstra-
tion scenarios of action sequences: preparing batter, wiping a
table, shaking and pouring a bottle’s content into a bowl and
polishing a bowl. The Preparing batter scenario contains two
cups, which are grasped by the human, who pours the content
of both cups into a bowl and then places the cups again on the
table. Afterwards the liquids are mixed with a whisk, which
also has to be grasped by the human to perform the mixing
task, and which is eventually placed on the table. This scenario
was chosen because it contains several objects and typical
actions in the context of household robot. In Fig. 5 the semantic
segmentation of one trial of this scenario is depicted. The inter-
object distances that do not matter for this segmentation task
are omitted in this diagram for better clarity. Whenever the left
or right hand grasps an object or puts down an object a new
key frame is inserted. In the table wiping scenario, the human
demonstrator grasps a sponge from a table and wipes the table
using several different wiping styles like intensive wiping of a
spot or wiping of a big area with circles. In the third scenario,
a bottle is being grasped, tossed, inspected, shaken, poured and
dripped off. In the fourth scenario, a big bowl is being held
in one hand and polished by the other hand with changes of
the hands in between. In each scenario the trials vary in the
selection, duration and order of the actions.

D. Evaluation and Comparison

We evaluated our approach on a set of 13 action sequences
in the previously described scenarios. Generating ground truth
data from these demonstrations is difficult since the actions
transition often smoothly into the next action without a clear
cut. Also, it is even for the human not clear when precisely
an action ends and starts. Nonetheless, the recordings of these
action sequences were segmented manually as a reference to
which the results of the algorithms are compared. Results of
the pure motion characteristic segmentation are demonstrated
in Fig. 6 on a motion that changes the motion characteristics
frequently.

In Fig. 7 the results of the hierarchical segmentation for the
shaking-pouring scenario in comparison with manual reference
segmentation, Principal Component Analysis (PCA) and Zero-
Velocity-Crossings (ZVC) are shown. The two types of input
values (position and object relations) are both depicted in
bottom of the figure. The distance between objects serves as
input for the semantic segmentation and the position values
are the input for the other methods. In the middle of the figure
the found key frames for each algorithm are denoted. For the
hierarchical segmentation, the key frames found in the separate
levels are visualized with a different color. In this example,
it can be seen how important the segmentation based on the



Fig. 5. Segmentation based on object contact relations: When two objects
get in contact with each other (contact in this case is approximated as
distance < 7mm) or lose contact, a new key frame is inserted with the
current world state attached to it. The dotted vertical lines depict the detected
semantic segments. Only distances between objects that get in contact during
the complete demonstration are shown.

motion characteristic is. The semantic segmentation only found
two key frames (green bars), because object relation changes
only occurred twice: when grasping and placing the bottle.
The motion based segmentation found eleven key frames, from
which 7 are also found in the manual segmentation. This
shows, depending on the action sequence, that the hierarchical
segmentation significantly improves the pure semantic segmen-
tation from our previous approach [15].

The average metric results over all 13 action sequences
are shown in Table I. In this table, our Hierarchical Segmen-
tation (HS) algorithm is compared using the proposed metric
with segmentation algorithms based on Zero-Velocity-Crossing
(ZVC) and Principal Component Analysis (PCA). In addition,
all 13 demonstrated action sequences (30-40 seconds each) are
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Average Results HS ZVC PCA

Error 3.35 s2 7.01 s2 20.18 s2

Accuracy 0.27 s 0.1 s 0.36 s
Unmatched key frames 2 0.6 27.9

Missed key frames 3.54 12.27 3.5

TABLE I. COMPARISON WITH OTHER SEGMENTATION METHODS.

compared to manual segmentation performed by two persons.
The error row indicated the value of the proposed metric.
Accuracy is the average distance of matched key frames to
the manual segmented key frames. Unmatched key frames
(false positives) mean how many key frames found by the
algorithms were not assigned to a key frame denoted in the
manual segmentation. Missed key frames (false negatives)
indicate how many key frames of the manual segmentation
where not assigned to a key frame found by the algorithms.
The results are the average results over the 13 action sequence
demonstrations. The parameters for our approach were trained
on five action sequences with a genetic algorithm and tested
on all 13 sequences.

It can be seen that the proposed algorithm achieves signif-
icantly smaller error values than the two other approaches. In
Fig. 8 three trials of the shaking-pouring scenario are shown
in comparison to the manual segmentation and the hierarchical
segmentation. Most of the key frames are found and only a few
are missed.

Manual Segmentation

35.45 s

Hierarchical Segmentation

Manual Segmentation

43.14 s

Hierarchical Segmentation

Manual Segmentation

37.56 s

Hierarchical Segmentation

Fig. 8. Comparison of manual to hierarchical segmentation with 3 trials of
the same shaking-pouring scenario. The vertical lines denote key frames at
their timestamps. Missed key frames are shown in red. Matched key frames
are shown in green. The 3 trials contain grasping, placing, shaking, tossing,
inspecting and pouring actions similar to Fig. 7 (top) each in different order
and with different timing.

The difficulties in these scenarios lie in the unobservable
effects of some of the actions, e.g. in pouring and mixing
since the liquids are not tracked. Therefore, the actions cannot
be detected with the semantic segmentation based on object-
relation changes and a detection on motion characteristic level
is required.

E. Discussion

In the following we discuss our achievements and results
from different relevant point of views.
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1) Data acquisition: Evaluating the precision of the object
tracking is difficult since there is no ground truth data. How-
ever, in general, the algorithm will produce exact solutions
unless the input data is contaminated with noise or error. The
precision depends on the following components:

• Positional precision of the markers. With the used
motion capture system, the deviation lies around 1
mm.

• The position of the virtual markers. This is in practice
a common source of error, since the marker are placed
by hand on the object in a 3D modeling tool.

• The 3D model of the object. Errors in the modeling
the object affect the contact detection of the objects.

• Markers on non-rigid bodies like hands do not have
constant relative positions to the other markers on
the object, if the object is transformed and therefore
impede the calculation of the 6D pose. The marker
registration algorithm minimizes the error if there
are more than three markers. However, an error will
persist. In our application, we treat the hands as rigid
bodies for simplicity, as the error is small enough to
deal with.

2) Semantic segmentation: Compared to our previous work
in [15], the segmentation results showed significant improve-
ments. The segmentation in [15] has been done solely based
on marker positions, which do not represent the object shape

accurately and therefore contact detection was not reliable.
A high threshold was needed for an approximated contact
detection, which easily lead to false-positives. This deficiency
has been alleviated by incorporating the region around every
key frame. Since our new approach makes use of 3D object
models, the contact detection threshold can be reduced to
a 1

20
th of the old threshold (7 mm instead of 150 mm). In

general, the new segmentation approach relies strongly on
the precision of the 6D trajectory and the model associated
with it. An inaccurate model can lead to false or missed
contact detection and therefore to false segmentation. Based
on our experience, the precision is sufficient to detect all
contacts and segment the trajectory into their semantic parts.
As shown in Fig. 5, where the action sequence of pouring
with two different cups and a subsequent mixing action was
demonstrated, the contact between the objects can be extracted
from the distance-curve and, thus, the key frames are inserted.
For the sake of clarity, several distance curves between the
objects have been omitted. In certain cases, a lost contact does
not mean that a new action starts. For example, during the
wiping action, the sponge occasionally loses contact with the
table. Based on the assumption that actions have minimum
duration (we set 500 ms as a threshold), this situation is
avoided to a certain degree by merging adjacent key frames
that are temporally too close to each other.

3) Subsegmentation based on Motion Characteristic: The
subsegmentation tackles the problem of unobservable effects
of actions. Additionally, different styles of periodic actions



can be detected (different wiping styles, e.g. wiping in lines
or intensive wiping on one spot). In Fig. 6, a segmented
action of wiping is shown, which is then subsegmented in
different wiping styles. Each time the wiping pattern changes,
a new key frame is inserted. In Fig. 7, the further inspection
and segmentation of a semantic segment, which supposedly
represents a pouring action, indicates these segments comprise
more actions without observable effects, and, thus, can be
further divided into subsegments. In our experiments, most
segments have been detected, though a smooth transition
between two actions can be problematic and no key frame
might be found.

VI. CONCLUSION

In this work, a hierarchical segmentation approach has
been presented which first allows the reliable determination of
semantic key points in continuous human movements. These
points denote clear transitions between different manipulation
actions where the human changes the scene. To detect these
changes, a robust method has been implemented which enables
the robust and accurate pose estimation of objects and the
human hands. This is then used for the detection of con-
tact relations between these entities based on mere marker-
based motion capture data. We showed that such semantic
segmentation cannot deal with unobservable effects of actions
when important key frames of the demonstration can neither
be determined algorithmically nor detected by current sensor
technologies. To this end, we propose a new algorithm for
the subsegmenting of semantic segments based on trajectory
shape and motion characteristics. The algorithm is based on
a heuristic that incorporates the characteristic of a motion
into the segmentation procedure. The algorithm differs from
other segmentation approaches in the literature as it represent
a compromises between key frame search based on certain
criteria, but does not require the complete trajectory to be
known in advance.

The experimental evaluation shows that the hierarchical
segmentation approach allows the identification of meaningful
segments in complex human demonstrations without over-
segmentation and without omitting important demonstration
key frames. Due to the hierarchical approach, the found
segmentation points are enriched with additional information
which can be useful for the organization, the sequencing, and
the reproduction of learned actions and motion primitives.
Future work is concerned with the extension of the underlying
heuristic for motion segmentation. Further, we will investigate
the use of the segmented demonstrations as input for our work
on imitation learning of manipulation action primitives.
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