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Abstract— Engineering humanoid robot hands with the abil-
ity to dexterously grasp objects of different sizes, shapes, mate-
rial properties and weights requires sophisticated tactile sensing
and intelligent controllers able to interpret sensory information
and adapt contact forces with the object to achieve a stable and
safe grasp. In this paper, we present a new soft humanoid hand
equipped with a multimodal sensor system in each finger and
a human-inspired grasp-phases controller that is able to detect
the different phases of a grasping and manipulation task, adapt
interaction forces with the manipulated object and balance the
force distribution in both precision and power grasps based
on tactile feedback. To evaluate the controller, we conducted
experiments with the hand on the humanoid robot ARMAR-6
and 31 different soft and rigid everyday objects and food items
with weights ranging from 4.8 g of a paper cup to 1133.8 g of
a bottle, different shapes and material properties. The results
show that grasping force can be reduced by 65% compared to
a naive grasping approach using maximum force for grasping
and manipulating both fragile objects without destruction as
well as heavy objects.

I. INTRODUCTION AND RELATED WORK

Robust grasping of unknown objects with varying shape,
weight, stiffness, fragility, material properties and changing
center of mass remains a challenging problem [1], yet funda-
mental to truly endow both humanoid robots and prostheses
with the abilities needed to perform dextrous grasping and
manipulation tasks. Engineering such capable hands requires
not only the integration of mechanics including actuators,
sensors and embedded systems in limited space, but also
the development of intelligent controllers able to interpret
multimodal sensory data and to adapt to different objects and
tasks. A key requirement on such controllers is the ability to
continuously estimate and update grasping forces applied on
an object to ensure safety and stability of the grasp.

To implement such force adaptation strategies, tactile
feedback at the contact points between hand and object is
crucial to describe their interactions in the different phases
of a grasp, i.e. to detect initial contact and adapt the applied
forces to establish a stable grasp, to lift, hold and replace
the object. An overview on the use of tactile information in
grasping and manipulation tasks is presented in [2]. In this
work, we present a novel soft humanoid hand, see Figure
1, which is equipped with a multimodal sensor system and
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Fig. 1: Soft humanoid hand with multimodal sensor system attached
to the humanoid robot ARMAR-6

controllers for the adaption of object-hand interaction forces
in the different phases of grasping and manipulation tasks.

Numerous control strategies for grasping unknown objects
introduced in the literature share the common goal of
estimating and controlling the friction coefficient at contact
points between the hand and the object. This is either achieved
through measurement of shear and normal forces [3]–[5],
slip detection and prevention [6]–[11], or a combination
of both [12]–[14]. In [4], the control target is explicitly
formulated in terms of the friction coefficient based on
normal and shear forces estimated from raw sensor data using
machine learning. A similar formulation has been used in
[5] on the basis of 3D-force sensors. The authors in [12]
use a optoelectronic sensor array and machine learning for
determining normal and shear forces for friction coefficient
based control. Thereby, objects are explored to estimate the
friction coefficient and the noise in the shear force signal is
used for slip detection. The work has been extended in [13] to
allow an online estimation of the friction coefficient. A similar
approach for the online estimation of the friction coefficient at
each contact point for the manipulation of heavy deformable
objects based on optoforce sensors data is described in [14].

A different approach is to explicitly deal with the problem
of slip detection. In [15], a hybrid position/force controller
is employed for grasping where the controller target values
are adapted based on slip signals. Slip detection and grasp
force adaption based on normal, shear and torques measured
at the contact points was shown in [7]. A similar system is
implemented using a velocity-based force controller in [8]
that increases the applied force at the contact points once slip
is detected. The authors in [9] present a rule-based system
for grasping utilizing slip detection. A human-inspired grasp
stabilization controller based on tactile feedback is presented
in [10], where each finger is independently controlled based on
slip detection and a leaky integrator-based velocity controller.
This distributed control approach ensures stability of a grasp in



complex in-hand-manipulation tasks. In [11], a neuromorphic
controller is used where slip events are encoded by spikes
and used as input for a monotonic PI controller.

Other works deal with the estimation of the required normal
force based on object stiffness/material. In [16], the stiffness
is estimated based on the distance change between the gripper
yaws during initial contact. A similar approach is used in [17]
and [18] and extended to detect slip in grasping with prosthetic
hands and a gripper. In [19], an online method for simultaneous
detection of contact events and object material based on tactile
data is presented.

Few works approach the problem of developing grasping
controllers that adapt grasping forces during the different
phases of a grasp and manipulation task. In [20] four different
behaviors for gentle closing, holding, handover and in-hand
manipulation are implemented using feedback from a vision-
based tactile sensor. Research about sensorimotor control
in humans [21] reveals that grasping and manipulation tasks
consist of a sequence of the action phases reach, load, lift, hold,
replace and unload. These phases are defined and characterized
by contact events and force profiles at the contact points to
allow a smooth transition between consecutive phases of such
tasks. Inspired by [21], the authors in [16] describe a grasp
controller for picking up and placing an object based on tactile
events derived from pressure arrays attached to the yaws of
a parallel gripper and a accelerometer. The work shows how
tactile feedback can be used to complete a grasping and
manipulation task on a robot. Our work shares similarities
with this work as we use the same strategy regarding the
decomposition of a grasping and manipulation task in different
phases. However our work extends the approach to soft
humanoid robot hands including synchronization between
actuators.

Recently, soft anthropomorphic hand designs and their
sensorization have been studied to increase robustness and
safety of grasping while exploiting natural interaction with
the objects and passive compliance and/or active regulation
of grasping forces [7], [22]–[27].

In this work, we present a novel version of a soft humanoid
hand by combining our previous development of soft fingers
[28] and sensorized fingers [29]. The new soft fingers are
equipped with normal force sensors, 3D-shear force sensors,
proximity sensors and accelerometers. The fingers are attached
to an under-actuation mechanism to control all fingers with
only three motors. Using this new hand, we develop a human-
inspired grasp-phases controller that is able to detect the
different phases of a grasping and manipulation task, adapt
interaction forces with the manipulated object and balance
the force distribution in both precision and power grasps
based on tactile feedback. In contrast to most works in the
literature, we do not restrict the grasps such that contact points
are located on sensorized surfaces, but explicitly deal with
incomplete sensory information. We evaluate the controller on
a humanoid robot in grasping and manipulation experiments
with 31 objects of different sizes, shapes, material properties
and weights.

(a)

(b)

Fig. 2: (a) Palmar side of the soft finger. (b) Section view through
the fingers silicone and distal bone exposing the internal structure
and sensors visible from this side. The PCB with sensors on the
intermediate phalanx covers both sides of the finger, as can be seen
in (a).

II. THE KIT SOFT HUMANOID HAND

The soft humanoid hand combines our previous develop-
ments of soft fingers [28] and sensorized fingers [29]. The
hand is driven by three DC motors, where thumb and index
finger are actuated independent by one motor each and the
remaining fingers are actuated by the third motor via an
underactuation mechanism. Here, we provide a description of
the hand, in particular the soft fingers and their sensor system,
as well as a brief description of the hand mechanics.

A. Soft Finger Design

The mechanical design of the soft fingers is based on
our previous work [28]. These fingers are comprised of 3D-
printed bones for the distal, intermediate and proximal phalanx,
connected by a leaf spring. The bones are encased in soft
silicone and actuated using a tendon. Compared to the fingers
in [28], in which each finger tip is equipped with a high
resolution camera, we have adapted the mechanical structure
of the finger to printed circuit boards (PCBs) mounted on the
distal and intermediate bones of the finger. The plastic leaf
spring in the original design has been replaced by a steel leaf
spring with 90 µm thickness, which also made it possible to
attach the spring to the bones using screws instead of glue.
Two flat flex cables are taped to the spring, connecting the
PCBs at the finger bones. An overview of the design of the
fingers is depicted in Figure 2.

B. Embedded Sensor System

The sensor system used in the fingers is based on work
presented in [29] originally developed in a setting with rigid
fingers. The work includes an in-depth characterization of the
sensor system and its different modalities. The sensor system
includes normal and 3D-shear force sensors, accelerometers,
joint angle encoders and proximity sensing in each finger.
Our approach toward the realization of sensorized humanoid



hands relies on using commercially available off-the-shelf com-
ponents and fabrication techniques to allow a reproduceable
design. Hence, we use digital sensors on standard PCBs, which
are connected to a central processing unit by a digital bus (I2C).
We notably include barometer-based normal force sensors
as well as Hall effect-based 3D-shear force sensors which
can both measure forces in normal direction. The barometer-
based sensors are more sensitive and are used to augment
the readings of the 3D-shear force sensors, as explained in
Section III. For the design of the sensor system for the soft
hand in this work, we adapted all but two sensing modalities.
Unchanged are the accelerometers in the fingertip as well as
the 3D-shear force sensors.

We replaced the time-of-flight based distance sensor by a
proximity sensor since the silicone reflects some light and
hence interferes with the time-of-flight measurement. Inspired
by the results presented in [30], we integrated an infrared
proximity sensor (VCNL4040, Vishay Semiconductors) at the
base of the distal phalanx. Since the soft fingers have no
clear axis of rotation in the joints and can also additionally
twist, the joint angle measurement has also been adapted. We
placed a magnet at the distal and proximal phalanx facing
the respective joint and two 3D hall effect sensors at the
intermediate phalanx facing these magnets. If the joint is
actuated, the magnet moves closer to the sensor. This results
in a nonlinear but monotonic signal that has been measured
and fitted using a piecewise linear function.

Lastly, we adapted the barometer-based sensitive normal
force sensors. The design we presented in [29] uses barometers
with a metal lid and a miniature hole for air, which made it
necessary to encase them with small casted silicone covers.
The cover ensured that an air pocket is formed above the
sensor, transducing the pressure through the miniature hole
in the lid to the sensor. Another work circumvented the
problem by carefully removing the lid, drilling the hole
open and glueing the lid back onto the sensor [31]. For
the soft fingers we now use barometers usually used for
medical applications (LPS27HHW, ST Microelectronics),
which feature an exposed sensor covered by soft gel. It is
hence possible to directly cast the sensors into silicone without
any prior modifications or additional covers, which greatly
eases production. The barometer-based normal force sensors
show a similar performance to the ones described in our
previous work.

C. Underactuated Hand with Embedded System

Five of the soft fingers described above are used for the
realization of an underactuaded anthropomorphic hand. The
design is based on our previous design presented in [28] and
described here briefly for completeness. The hand includes
three identical DC gear motors, where thumb and index fingers
are driven by one motor each and the remaining fingers are
driven by the third motor via and an underactuated mechanism.
This mechanism allows each of the three fingers to close even
if others are blocked, hence the fingers can wrap around the
object to conform to the object’s shape. Through a block and
tackle system, the force on the motor tendon is tripled and

distributed adaptively to the three fingers at the cost of three
times the closing time. Hence, the force acting on little, ring
and middle finger is roughly the same as the force acting
on the individually actuated index finger and thumb since
all motors are identical. This greatly eases the development
of force control algorithms, as all fingers behave the same
apart from closing speed. The completed hand with sensorized
fingers is shown in Figure 1.

The hybrid embedded system for sensor data processing and
control consisting of a microcontroller and FPGA integrated
in the palm is the same as in [28]. In this work, we use
the FPGA to read the ten buses to all sensor PCBs in the
fingers in parallel with a sample rate of 140 to 160Hz
depending on processor timings. Multiple accelerometer values
are transmitted in each frame since the accelerometer samples
at 1.6 kHz. The aggregated sensor data is then passed to the
microcontroller and from there to the EtherCAT bus of the
humanoid robot ARMAR-6 we use in our experiments.

III. GRASP-PHASES CONTROLLER

Our goal is to realize a human-inspired grasping controller
that is able to (i) detect the different phases of a grasping
and manipulation task, (ii) adapt interaction forces with the
manipulated object and (iii) balance the force distribution in
both precision and power grasps based on tactile feedback pro-
vided by the multimodal sensor system of the soft humanoid
hand. This grasp-phases controller should be able to stabilize
unknown objects during the whole grasping process, while
minimizing the force exerted on the object based on tactile
feedback. The code of the controller is publicly available1.
To integrate with the EtherCAT bus used on our humanoid
robot ARMAR-6, the controller has to run with at least 1 kHz.
Using this grasp-phases controller, the hand should be able to
grasp and lift fragile objects like a plastic cup or toast without
crushing it, while stabilizing heavy objects such as water
bottles. Inspired by sensorimotor control in human grasping
and manipulation [21], we consider all phases of a grasping
and manipulation task, i.e., closing the fingers to establish
contact with the object, lifting, holding, manipulating and
placing the object.

The proposed grasp-phases controller is designed to grasp
and manipulate unknown objects, without prior knowledge
about object size, weight or shape. Hence, the controller has
to infer the necessary grasping force purely based on sensor
information at run-time and adapt forces at contact points in a
reactive way. Figure 3 depicts the structure of the grasp-phases
controller and employed control laws.

Each of the three motors is controlled separately by its own
motor controller based on sensors in the fingers associated
with the motor: The thumb motor is controlled based on
sensors inside the thumb, the index motor based on sensors
in the index finger and the third motor based on signals
from the remaining three fingers. It has been shown that such

1Code available Online at: https://gitlab.com/ArmarX/
Armar6RT/-/blob/master/source/Armar6RT/libraries/
KITSensorizedSoftFingerHandV1NJointControllers/
MinimalGraspingForceV1.h
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Fig. 3: State machine of the proposed grasp-phases controller. Values
in green are values continuously calculated based on the the hand
sensor signals

an approach can reduce control complexity while ensuring
the overall grasp stability based on the interaction between
decentralized controllers through the object [10]. In this work,
the three motor controllers are synchronized at the end of
each grasp phase so that they start the new phase only if all
fingers are ready.

The design of the grasp-phases controller follows two main
principles: a) taking inspiration from human grasping and b)
minimizing the number of necessary control parameters.

a) Human-inspired Phases of grasping and manipulation
tasks: The soft humanoid hand with its human-like shape and
sensing modalities is predestined for the implementation of a
human-inspired approach to grasping. Therefore, we divided
the grasp-phases controller following the concept presented
in [21] into the four grasping phases reach & close, load-lift-
hold-replace, unload and open & retreat. Transitions between
these phases are defined by contact events or sudden changes
in interaction forces. Compared to the grasping phases in [21],
our grasp-phases controller maps the four grasping phases
load, lift, hold and replace to one single phase (load-lift-hold-
replace). We consider this assumption reasonable as, except
the load phase, the lift, hold and replace phases are mainly

concerned with arm motion and share similar goals in terms
of object stabilization and force control. The goal of the grasp-
phases controller, with its four sub-controllers for the four
phases, is to robustly grasp objects with different properties
such as size, weight and shape while ensuring the right amount
of force to avoid squashing the object in the hand.

The grasp-phases controller generates pulse width modula-
tion (PWM) targets for each motor based on only two external
control signals: (i) The command to start object grasping and
(ii) a signal indicating that the object will soon be replaced. As
the controller does not rely on additional external information,
it is also easy to use in the context of prosthetic hands, where
only information from sensors embedded into the hand is
available.

b) Design of the sub-controllers: For the sub-controllers,
the number of control parameters can drastically influence the
amount of time needed to tune the controller. Hence, we aim
– wherever possible – to reduce the number of engineered
control parameters. Furthermore, we selected parameters that
are intuitively explainable, either in the context of the human
grasping process or based on physical laws. Due to sensor off-
sets in the measurement of normal and shear force that depend
on several changing conditions such as room temperature and
atmospheric pressure, the controller automatically determines
such offsets by continuously averaging these sensor values
when the controller is inactive.

In the following we describe the different grasp phases and
the implementation of their sub-controllers.

A. Reach & Close Sub-Controller

In this work, we assume a pre-defined grasping pose for
the hand, as finding a suitable grasping pose for unknown
objects goes beyond the scope of this work. The grasp-phases
controller is started by an external signal which starts the
reach & close sub-controller for each motor. As the grasp
should be executed as fast as possible, the fingers initially
close with the maximum PWM cPWM

max . To avoid hitting the
object at maximum speed, the finger velocity is then scaled
based on the sensor data of the proximity sensor. The values r
of proximity sensor are normalized to the interval [0, 1] where
1 indicates that no object is in the range of the sensor, i.e., no
reflected light is detected, and 0 indicates that the the finger
has contact with the object, i.e., a maximum amount of light
is reflected. The proximity signal of the sensor depends on the
reflectance of the object. Nonetheless, the signal has proven
suitable for a large range of objects. Hence, the maximum
PWM is scaled by the proximity sensor data r ·cPWM

max to reduce
the speed and gently establish contact with the object (see
Fig. 3-A). Due to this normalization, the fingers proportionally
slow down as they reach a distance of around 2 to 3 cm. To
make sure that the fingers establish contact with the object,
the maximum value of r ·cPWM

max and cPWM
min is used, where cPWM

min

is the minimum PWM required to slowly close the fingers.
Such slow closing of the fingers is also important to prevent
damage of the object.

Contact with the object is detected by the contact threshold
θcontact ≤ fBar on the maximum signal fBar from the sensitive



barometer based normal force sensors. Specifically, the
maximum is taken over the barometers placed at the left
and right of the proximal phalanx (BProxL, BProxR), at the
distal phalanx next to the joint (BDistJ ) and next to the tip
(BDistT ), as shown in Equation 1.

fBar = max{BProxL, BProxR, BDistJ, BDistT} (1)

For the motor actuating little, ring and middle finger, the
maximum over all three fingers is taken. As soon as any
finger sensor detects contact, the motor switches to position
control mode to hold the position at which the contact occurred.
When grasping an object with protruding edges, the finger
may make contact with the object that is not detected by any
normal force sensor because the sensors do not cover the
entire finger. As a fallback for this case, we use the relative
motor encoder to detect if the finger has stopped moving. This
also covers the case where the finger misses the object and
closes completely. The contact position is then held until the
other two motors also bring their fingers into contact with the
object or close the corresponding finger(s) completely. When
all three motors are either in hold position mode or stopped
moving, the sub-controllers of all three motors trigger the
next phase. As described in [32], this contact sensing based
closing behavior has advantages compared to closing the hand
without sensor feedback, even in the presence of adaptive
underactuation and passive compliance.

B. Load-Lift-Hold-Replace Sub-Controller

As soon as all fingers have detected contact with the object
or have stopped moving, the motor controllers switch to force
control mode for each motor and directly output PWM targets.
Each motor acts based on the maximum over all barometer-
based normal force sensor values fBar measured in the fingers
actuated by the motor.

The force controller consists of two feedforward terms
as well as a PD-controller. The first feedforward term fp(·)
takes the relative motor encoder position pMotor and calculates
the PWM necessary to hold it. This term hence cancels the
progressive spring forceand is realized as piece-wise linear
function obtained by slowly increasing the PWM of the motor
and recording the relative motor encoder position pMotor. The
second feedforward term ff(·) takes the target force f̂Bar as
input and outputs a PWM value that produces this target. The
piece-wise linear function representing this term was obtained
by letting the index finger in a fully opened state press against
a flat surface with increasing PWM while recording fBar.
Lastly, a PD-controller reduces the error of the feedforward
terms. This term is clamped to a value of ±ccl, so that, if none
of the barometers is in contact with the object, the controller
outputs reasonable values based on the feedforward terms.
The force is controlled based on the barometer based force
sensors since these are far more sensitive compared to the
Hall effect sensors. The force controller can be expressed by

Equation 2 (see Fig. 3-B):

e = f̂Bar − fBar

PWM = Clamp{knP · e+ knD ·
de

dt
; ccl} (2)

+ ff(f̂Bar) + fp(pMotor)

The normal force target f̂Bar is calculated by a P-controller
acting on the normal to shear force ratio (Equation 3), with
an offset defined by a fixed term of fmin (Equation 4). The
fixed term ensures that the force controller always retains a
small contact force with the object. For the overlying friction
control, we assume a fixed friction coefficient µ. The shear
and normal forces sMag and nMag are calculated over all
fingers as an average over all active shear force sensors. A
sensor is deemed active if the barometer between these two
sensors indicates contact. We explicitly use the normal force
component of the Hall effect sensors instead of the barometer
values for this calculation so that all measurements share the
same measurement principle. For the sake of simplicity, we
assume here that the surface normal of the object coincides
with the normal force direction of the shear force sensors.
The shear force controller is implemented as follows:

f̂µ = ksP ·
(
1− µ ·

nMag

sMag

)
(3)

f̂Bar =
(
fmin + f̂µ

)
· cFS (4)

The target forces are scaled by the factor cFS (Equation 5), for
all fingers other than the thumb so the four opposing fingers
do not force the thumb open.

cFS =

{
1 if thumb
1
3 else.

(5)

We used the factor 1
3 instead of 1

4 for balancing the four
fingers opposing the thumb to compensate for friction in the
mechanism and rope guides.

C. Unload and Open & Retract Sub-Controllers

The unload sub-controller is triggered by an external signal
from the robot control PC, indicating the intent to soon place
the grasped object. This prevents triggering object unloading
in the case of accidental contact events with the environment
while performing a transfer motion. Once the external signal
is received and contact with a supporting surface is detected,
the controller starts to reduce the forces applied to the object
to replace it in a controlled manner. Contact is detected if
at least three of the accelerometers embedded in each finger
tip sense vibrations in the range of 400 to 800Hz of the fast
Fourier transform of the accelerator signals in a window with
the last 32 measurements and a total energy over θre. This
indicates the start of the unloading phase. For each motor,
the rate of change in pressure dfBar

dt is controlled by a P-
controller with kuP , setting a PWM target (see Fig. 3-C). The
target rate of change is calculated at the beginning of the
phase such that unloading of the object is expected to finish
within one second. As soon as all fingers driven by the motor



TABLE I: Controller parameters.

Parameter Value Parameter Value Parameter Value

cPWM
max 100% cPWM

min 30% θre 40000
θcontact 21mbar ccl 11% ksP 5000
knP 1 knD 0.2 kuP -15
fmin 120mbar µ 0.4

reach a value below a contact threshold fBar < θcontact, the
motor switches to position control mode and holds the current
position until all motors finished unloading, i.e., all fingers
are no longer in contact with the object.

The unload phase is considered completed when all fingers
have either lost contact with the object or are completely
opened. In the subsequent Retreat phase, see Fig. 3-D, the
fingers open with maximum motor speed to the maximum
hand aperture.

IV. EXPERIMENTAL EVALUATION

The grasp-phases controller is evaluated experimentally by
grasping everyday objects and food items using the humanoid
robot ARMAR-6 [33] and compared against the baseline
approach of grasping with maximum force. The parameters
used in all evaluation experiments are listed in Table I. The
control parameters strongly depend on the used hardware and
sensors. Hence, they have been experimentally chosen based
on a test set of objects that is completely disjoint from the set
used in the evaluation. Only subsets of parameters have to be
tuned at the same time as they are partitioned into the different
phases, such as {ksP , µ, fmin, k

n
D, k

n
P , ccl, θre} or {kuP , θcontact}.

The chosen value for µ has proven to be a good estimate of
the friction acting between the silicone fingers and textureless
surfaces. In our experiments, we use 31 different objects, see
Figure 4. The objects include three drinking vessels that are
grasped with two different liquid levels, resulting in 31 grasps
of objects with different properties. Object weight varies from
4.8 g for the paper cup to 1133.8 g for the plastic cola bottle.
For the heavy objects, different materials are chosen (metal,
plastic, glass) to assess the performance of grasping and lifting
objects with different friction coefficients. The object set also
contains rigid and soft objects like the elephant plushie, the
capri sun bag and the sponge. The execution on the robot is
completely decoupled from the grasp-phases controller since
the controller only receives two commands from the robot in
each grasping trial: the command to trigger grasping and the
signal indicating that the object will soon be replaced.

A. Experiment Protocol

The experiments are carried out with the hand attached to
the right arm of the robot, see Fig. 1. Each object is placed on
the table at a pre-defined position. Each grasp trail is carried
as follows: (1) We use kinesthetic teaching to guide the robot
arm in zero-torque mode to a pre-grasp and grasp pose. We
explicitly consider the reaching motion through pre-grasp
and grasp pose as we are in general interested in the whole
grasping and manipulation task. The grasp pose is chosen so
that the grasp is aligned with the longest object axis. (2) Start
the experiment with the arm in fixed starting position. (3) The

Fig. 4: Set of objects used in the experiments. From left to right and
back to front: chips, rectangular empty bottle, cola glass, PET bottle,
cola plastic, sponge, metal bottle, mustard bottle, potato starch, empty
capri sun, empty can 333ml, empty can 500ml, full boxed juice,
elephant plushie, full capri sun, boxed juice empty, peppermint tea,
salt sticks apple, bell pepper, papercraft box, paper cup, plastic cup,
orange, toast slices, jelly cup, yeast dumpling, ice cone, bananas,
mie noodles

arm moves to the pre-defined pre-grasp and grasp pose and
triggers the reach & close phase sub-controller. (4) As soon
as the controller has reached the load phase, the object is
lifted and moved to the right of the table. (5) The hand is
rotated approximately 45◦ using wrist pronation/supination
and flexion/extension to disturb the grasp. (6) The arm moves
the object back to the pre-defined grasping position on the
table and informs the grasp-phases controller that the object
can now be replaced. (7) The hand moves down until the
grasp-phases controller enters the unload phase. (8) The arm
moves back to the fixed initial position. For the baseline
approach, the same protocol is used with the difference that
the object is grasped with maximum force and lifted after a 3 s
delay. Further, the object placement is realized by detecting
contact with the table using the 6D-force/torque sensor in
the wrist of the arm. The execution of these grasping trials
is shown in the accompanying video. Example grasps are
depicted in Figure 5. Depending on the object height, a top or
side grasp was taught. Top grasps were for example chosen
for the bananas, the tea, yeast dumpling and apple.

B. Results and Discussion

For the evaluation, we consider several aspects that are
important to assess the quality of grasps in the conducted
experiments: a) The generated grasping force, b) the number
of dropped objects and c) the number of damaged objects.

a) Grasping Force: The amount of grasping force is
quantified in terms of motor effort, i. e. the time of PWM
modulation in percent. The baseline approach always utilizes
100% motor effort. For the grasp-phases controller, this value
is calculated by taking the average of the motor PWM at each
time step during the execution, beginning with the closing
of the fingers in the reach phase and ending at the end of
the open & retreat phase. Since each motor receives different
targets, the values are calculated for each individual motor.
Over all motors and grasping trials, the average motor effort
is 35.64%. The results for each motor and each grasping trial



Fig. 5: Example grasps using our approach (top row images) and the baseline approach (bottom row images).
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Fig. 6: Motor effort averages calculated over the duration of the experiments for the grasp-phases controller. While the baseline always
requires 100%, the grasp-phases controller uses averaged over all objects only 35.64%. As a result, the grasp-phase controller transmits
less force to the object and thus avoids damaging fragile objects.

are shown in Fig. 6. Evidently, the controller generates higher
motor efforts for heavy objects without a form closure grasp
as in the case of the metal bottle and the boxed juice. The
controller also generates higher targets for deformable objects
like the empty capri sun bag, the pet bottle and the toast.
This is caused by high perceived shear forces, which are most
likely induced by the fingers deforming the object, causing
the fingers to drag along the surface. The jelly cup shows a
clear anomaly, caused by its geometry. While grasping the
cup, contact occurred at the protruding edge at the top of the
cup where the lid is glued to, resulting in excessive shear
forces and low normal forces, probably since the silicone of
the finger was distorted locally due to the sharp edge.

b) Dropped Objects: The baseline approach was able to
lift and hold all objects except the jelly cup in all experiments
while the grasp-phases controller was not able to lift the yeast
dumpling and the potato starch. In the case of the potato starch,
the fingers formed a pinch grasp such that the sensors on the
inside of the fingertip had no contact with the object. For the
yeast dumpling, the shear force sensors were in contact with
the object but did slide along the surface without sticking,
most likely due to its crumbly surface. The baseline approach
did lift the dumpling but damaged it and failed to lift the jelly
cup because the quickly moving index and thumb pushed the
object out of the hand.

c) Damaged Objects: During the 31 grasp attempts
executed for each approach, the baseline approach damaged
nine objects (plastic and paper cup, both cans, boxed juice
empty, toast, bananas, empty open PET bottle, paper-craft
cube). The grasp-phases controller slightly pushed in the toast
with the thumb, otherwise all objects where grasped and
replaced without noticeable damage.

When placing objects, the grasp-phases controller managed
to replace 22 objects in the same pose they were picked up,
while the baseline managed to replace 23 objects correctly.
The baseline used an accurate force-torque sensor while the
grasp-phases controller relied on less accurate sensors of the
finger tips. The primary failure of the controller was due to
missing the placing event especially for soft objects, while the
baseline toppled over tall objects or flung away light objects.

During our experiments the controller required on average
75 µs on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz.

V. CONCLUSION

We present a soft humanoid hand equipped with a mul-
timodal sensor system in each finger to measure normal
and shear forces, distance, joint configuration and tactile
events. Further, we present a human-inspired grasp-phases
controller that is able to detect different phases of a grasping
an manipulation task and adapts object-hand interaction
forces based on tactile feedback to allow safe grasping of



completely unknown objects with different sizes, shapes and
weight. This work extends existing human-inspired approaches
to anthropomorphic hands and introduces an approach for
synchronizing the actuators. We demonstrate the performance
of the controller in experiments with 31 objects to evaluate the
ability to balance forces at the contact points in precision and
power grasps based on tactile feedback in the different phases
of the task. The evaluation also demonstrates the ability of the
grasp-phases controller to adapt forces while grasping fragile
objects preventing their damage as well as to heavy objects.
The implementation explicitly deals with incomplete sensor
data while maintaining a low parameter count.

The experiments also revealed several shortcomings that will
be addressed in our future work. In particular, the softness of
the fingers makes slip detection challenging as the fingers slide
uniformly over flat surfaces, making the detection of vibrations
or sudden changes in shear force difficult. In the future we
will conduct experiments with fingertip structures to induce
noticeable vibrations during slip events. Slip detection would
also allow a dynamic estimation of the currently constant
friction coefficient. Further, grasping of thin and heavy box-
shaped objects remains challenging as interaction with the
objects is primary achieved through contacts with the very tip
of the fingers. In our future work, we will work on further
improvement of the finger tip sensor system in terms in
miniaturization and signal robustness. This would also improve
the controller behavior for the unload/placing phase, as this
is currently solely dependent on the accelerometer signals.
Detecting acceleration spikes is difficult when placing soft
objects, as the impact will be dampened by the softness of
the object.
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