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Abstract— A cognitive robot system has to acquire and
efficiently store vast knowledge about the world it operates in.
To cope with every day tasks, a robot needs to learn, classify and
recognize a manifold of different objects. Our work focuses on
an object representation scheme that allows storing perceived
objects in a compact way. This will enable the system to store
extensive information about the world and will ease complex
recognition tasks. The human visual system deploys several
mechanisms to reduce the amount of information. Our goal is
to develop an artificial system that mimics these mechanisms
to create representations that can be used in cognitive tasks.
In particular, in this paper we will present an approach that
exploits similarities among different views of objects. The
proposed representation scheme allows for reduction of storage
required for the representation of objects and preserves the
information about the similarity among objects. This is achieved
by selecting ‘important views’ of objects, depending on their
stability. Furthermore, by extending the same approach to
multiple objects, we are able to exploit similarities between
objects to find a common representation and to further reduce
the storage requirements.

I. INTRODUCTION

The main focus of our work is to develop an object
representation and learning scheme, that is suitable for learn-
ing in humanoid robots, e.g. via action-perception coupling,
much the same way as humans learn about objects in their
environment. To achieve the ability of recognizing objects
from all viewing directions, we introduced a learning and
representation scheme that allows generalizing to specific
views of objects [1]. We have shown that, given locations of
important views, the objects can be represented in a depth
rotational invariant manner, with a reduced amount of views
stored as representations. However, in the former work the
important views were selected manually.

In this paper, we introduce a solution on how to select spe-
cific important views of objects automatically. Our approach
is driven by the observation that there are specific views of
an object, that allow recognizing a wide range of rotational
variations of the object. Such views are often referred to as
stable views [2]. With these stable views of an object, its
appearance can be described using a minimal set of views.

The robot perceives the world in different modalities,
depending on the sensors and feature extraction methods
used. In real world scenarios, the robot will face objects,
which are similar in at least one modality and are only

separable by combining different modalities. Furthermore,
learning of objects from all possible viewing directions will
reveal even more similarities between views of different
objects. In our approach, we identify views that are shared
between objects. Similar views can be subsumed and stored
only once. In such cases we do not want to recognize objects
in the modality, in which the similarities exist, but rather
aim at a representation that preserves the information, which
objects are candidates for the specific view and modality. The
ability to discriminate such objects has to be achieved by
combining multiple modalities. The shared view of objects
in one modality can then be used to restrict the possibilities
in other modalities to only a few objects.

Our approach follows a global appearance-based repre-
sentation scheme of objects. In appearance-based vision sys-
tems, objects are represented with multiple retinal projections
of object views. In contrast, model-based representations
need more structural information, like full 3D models, which
are hard to aquire during online learning [3]. Furthermore, we
use global object descriptors to identify important views of
the object. The majority of recent work on object recognition
uses local features, which describe important locations in the
object’s appearance, considering measures for texturedness
or cornerness. These systems perform well in real envi-
ronments, are able to handle occlusion, and usually offer
invariances to at least shift and rotation in the camera plane
[4] [5]. Recognition of all rotations of an object with local
features is possible, but impractical in terms of efficiency
due to the amount of stored local feature representations.

The selection of important views of an object has strong
correspondence to the notion of canonical views used in
psychology [6]. In the past, different criterias that define
canonical views have been introduced. Blanz et al. give
a good overview of different criteria [7]. As our aim is
to implement an object recognition system based on our
representation and learning scheme, we are mainly interested
in the goodness for recognition criteria. More precisely, we
identify views of the objects, that are stable for at least small
transformations.

While the work on canonical views copes largely with
one outstanding view of the object, a representation scheme
which is used for recognition has to rely on multiple im-
portant views of the object, which together should cover the
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Fig. 1. System structure of the proposed learning and recognition system.

complete appearance.
Hall et al. presented an approach to extract multiple

important views of an object by identifying the most unique
views of the object [8]. The identification of unique views is
suitable, if the objects are to be visualized or if the resulting
views are used only to discriminate objects. The approach did
not take into account the similarity of views. Moreover, the
resulting views did not capture similarities among different
objects.

Yamauchi et al. introduced an approach for the identi-
fication of important views which combines the saliency
of views and the stability criterion [2]. They proposed an
approach based on spherical graphs which reflect all available
viewing directions of the object. Important views were iden-
tified using Zernike Moments [9] to measure the similarity
between neighbored views in the spherical graph. In their
work, Yamauchi et al. did not take into account similarities
among different objects. Each object had its own set of
keyframes regardless of the appearance of other objects.
Furthermore the number of extracted views per object had
to be predefined.

In the following, we present an approach that can be
applied to the output of different feature extraction methods.
Our approach will identify stable views for the objects
considering the Euclidian distance of the output from the
used extraction method. In the following we will referr to
these stable views as keyframes. Furthermore, our method
exploits similarities among different objects. The number of
keyframes per object does not have to be predefined. Rather,
the accuracy can be defined with an overall maximum error,
thus the system generates a different number of keyframes
per object, depending on the object’s appearance.

II. SYSTEM DESCRIPTION

A. Overview

Figure 1 gives a schematic overview of the system struc-
ture used throughout this paper. The system can be divided
into a training part and a recognition part. In the appli-
cation on a robot system, both parts have to be executed
simultanously to allow the acquisition of new objects during
interaction with the environment. The following sections will
primarily focus on the training part, since the recognition part
needs to rely on more than one modality as explained later
(subsection II-E).

As mentioned earlier, the presented approach does not
depend on a certain feature extraction method. The extraction

method used should fulfill the following requirements:
• The extraction method has to capture the global appear-

ance of an object.
• The extraction method should represent each view in-

variant to rotations in the viewing plane.
• The extracted feature vectors should be of reasonable

size to allow fast extraction of keyframes.
For the experiments in this paper, we use color cooccurrence
histograms (CCHs) to extract descriptors of the global ap-
pearance of views. The extraction of CCHs will be explained
in subsection II-B.

During keyframe selection, significant views of the objects
are identified by clustering the feature space into classes
containing similar views. Each class is identified with its
centroid, which is referred to as a keyframe.

Objects are assigned to keyframes in the labeling step.
Each keyframe will be associated with all objects that have
views in the corresponding class. Furthermore, we define the
activation of a keyframe as the number of views an object
participates with in the corresponding class. The keyframes
are stored in the object database, together with the labels and
activations determined in the labeling phase.

During recognition, the extracted features are classified
using the stored keyframes from the object database. The
classification will output all objects that have views similar
to the current percept and the corrsponding activations.

The following subsections will explain the different ele-
ments of the system structure in detail.

B. Feature Extraction

Throughout this paper, we will use color cooccurrence
histograms (CCHs) for the description of object appearances.
CCHs were chosen because they offer some properties which
allow the application in real world recognition tasks. For
instance CCHs offer a description of the object, which is
invariant to the rotation in the viewing plane, when the
parameters are chosen accordingly. Furthermore, CCHs offer
some robustness towards scaling. Finally, CCHs combine
texture information (in terms of information about pairs of
neighbored pixels) as well as color information.

Based on work performed by Haralick et al. [10], CCHs
were first introduced by Chang et al. [11]. In their work they
define an entry in the color coocurrence histogram by the
cooccurring colors and their distances in an observed image:

CH(c1, c2, Δx, Δy), (1)

where c1 and c2 describe two colors in RGB space and Δx
and Δy describe their distances in terms of pixels in the
observed image. To achieve a rotation invariant description,
only the absolute distance of the two colors is used in their
approach:

d =
√

(Δx)2 + (Δy)2 (2)

The cooccurrence histogram is derived by counting all oc-
currences of entries CH in the observed images.

In our implementation only cooccurences with a distance
d < 1.5 are observed. This restricts the cooccurences to
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Fig. 2. Resulting growing neural gas network after 2000 iterations.
10 objects with 72 views each were used as input. The features and node
positions were projected into 2D eigenspace.

neighboring pixels. Furthermore, the red and green color
channels (Ir, Ig) and the gradient magnitude of both color
channels (∇Ir,∇Ig) are used as histogram dimensions. The
choice of these image descriptors is motivated by the previ-
ous works of Ekvall et al. [12]. They showed that with the
combination of intensity and gradient descriptor calculated
on the basis of the red and green channels good recognition
results could be achieved. The cooccurrences in each channel
are considered separately. Each channel is quantized to 80
clusters in a preprocessing step. This results in a feature
vector of 320 dimensions, which is still of reasonable size.

C. Keyframe Selection

The identification of similar views in the set of CCH
features can be achieved by clustering the feature space into
similar classes. Since the keyframe selection process will run
autonomously, an unsupervised clustering method is required
for our approach. Furthermore, the applied method should
select the number of generated clusters dependent on the
distribution of the input data rather than on a prespecified
number of keyframes. One algorithm that fulfills these re-
quirements is the Growing Neural Gas algorithm (GNG)
which was first introduced by Fritzke [13]. The GNG is a
self organizing map, which grows in the process of training
according to the distribution of the input data. Thus the GNG
algorithm creates a topological map which represents the
distribution of the training data.

The GNG algorithm combines the Competitive Hebbian
Learning and the Neural Gas method proposed by Martinez
et al. [14] with an incremental learning approach. GNG
thus overcomes the problem of prespecifying the number of
nodes that is required to reach a certain goal. Heinke et al.
[15] provided a comparison of different incremental neural
network algorithms. Their comparison comprises Growing
Cell Structures (GCS), Fuzzy Artmap (FAM), and Growing
Neural Gas (GNG). As benchmark the performance of the
multi-layered perceptron (MLP) was used. The GNG algo-
rithm outperforms FAM on nearly all datasets and generates

less nodes then GCS with similar performance for most
datasets.

In the following, a brief introduction to the GNG algorithm
is given to ease the understanding of the choice of certain
parameters and the termination criterion. For a more detailed
description of the algorithm the reader is referred to [13]. The
network consists of the following components:

• A set of nodes N , each node n ∈ N has an associated
position vector wn.

• A set of edges E, each edge c ∈ E connects pairs of
nodes and has an associated age.

The algorithm can be described with the following steps:
1) Create two nodes n1 and n2 with random positions

wn1 and wn2 .
2) Select one feature f from the training set randomly.
3) Identify the nearest and second nearest nodes na and

nb to the feature f .
4) Increment the age of all edges starting from na.
5) Accumulate the error of node na by the squared

distance of node position wna and input signal f :

Δena = ||wna − f ||2

6) Move the nearest node na and the second nearest node
nb towards the input signal f using the learning rates
spa and spb:

Δwna = spa(f − wna)
Δwnb

= spb(f − wnb
)

7) Reset the age of the edge from the nearest to second
nearest node cna,nb

to zero. If no edge exists, create a
new edge.

8) Remove edges with an age larger than amax.
9) If the accumulated error ene of one node ne exceeds

the maximum error emax insert a new node in the
following way:

• Identify the node connected to ne with the maxi-
mum error nm.

• Insert a new node nc halfway between the two
nodes ne and nm:

wnc =
(wne + wnm)

2
• Insert edges cnc,ne and cnc,nm and remove the

edge cne,nm .
• Set the accumulated error enc of the new node to

the mean error of the nodes ne and nm.
• Decrease the accumulated error ene and enm by

multiplication with a constant factor α < 1.
10) Decrease all error variables by multiplication with a

constant γ < 1:
e′n = γen

11) Check termination criterion. If not matched restart with
step 2.

Depending on the termination criterion and the parameters
used for training, the GNG algorithm will produce a topo-
logical map of the input data with respect to the distribution
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of the input data. Figure 2 shows an example outcome of the
GNG clustering for 720 CCH features, which describe the
rotations of 10 objects.

The parameters used for training the GNG were deter-
mined empirically. Aim of the parameter choice was a bal-
ance between stability of the network and fast convergence.
Throughout the experiments a maximum edge age amax =
20 was used. The learning rates were set to spa = 0.16
and spb = 0.01. The factors for the adjustment of the
accumulated error in the case of a new node (α) and for
each iteration (γ) were set to α = 0.001 and γ = 0.995.

The parameters for the maximum accumulated error per
node emax and the termination criterion directly influence
the number of nodes created for the input data. The choice
of these parameters will be discussed in section III.

Each node from the network represents one cluster in the
space of input features and is considered a keyframe.

D. Labeling
The clustering results in a set of nodes N = (n1, . . . , nr).

In order to use these nodes for object representation and
recognition we have to restore the association of object views
with the clusters formed by the nodes. In the following,
s objects W = (F1, . . . , Fs) each described with t features
Fx = (fx,1, . . . , fx,t) are considered.

To associate object labels with nodes all objects x and their
features fx,v are traversed. For each node ni the number of
features of the object where the node is the nearest neighbor
to the corresponding feature is determined as:

bi,x = |{fx,v : i = argminu∈{1,...,r}||wnu − fx,v||2}| (3)

If bi,x is not zero, the object label x is appended to the list
of object labels Li for node ni, if not already present:

L′
i = (Li, x) (4)

Additionally, the activation ai,x of the node ni for the
object x is calculated by the following equation:

ai,x =
bi,x∑
x bi,x

(5)

The activation describes how likely a feature which is
associated to the node ni will belong to the object x. If
bi,x is non-zero, the activation ai,x is appended to the list of
activation Ai of the node:

A′
i = (Ai, ai,x) (6)

It is guaranteed that for all labels of one object the sum
of the corresponding activations is equal one, i.e.:

s∑
x=1

ai,x = 1 (7)

This shows that if the activation for an object for the node
equals 1, then the corresponding keyframe describes one
object uniquely. The node will only contain one object label
in this case.

In the object database, the node positions wn1 , · · · , wnr

are stored along with the associated labels Ln1 , · · · , Lnr and
activations An1 , · · · , Anr .

E. Classification

In the classification step, a perceived view of an object
in terms of its CCH f is matched with the keyframes
stored in the object database. This can be accomplished
by identification of the nearest neighbor ni in the set of
keyframes:

i = argminu∈{1,...,r}||wnu − f ||2 (8)

If the label list Li contains only one label, the corresponding
object is found. Otherwise the classification can not be per-
formed in a unique way. The list of labels Li contains objects
that have views similar to the currently perceived view. The
corresponding activations Ai describe the probabilities for
the individual objects.

In the case of multiple potential candidates for the current
view, the feature extraction method used is not sufficient
to separate between the objects in this class. In this case
other modalities are required to uniquely detect the object
corresponding to the perceived view. For this purpose our
approach reduces the number of possibilities to similar
objects in the modality observed and allows the restriction
to only a few objects for the search in other modalities.

III. PARAMETER EVALUATION

For all experiments in this paper, object views from the
Amsterdam Library of Object Images (ALOI) [16] are used.
The ALOI contains images of objects on black background
from 72 distinct viewing angles, which are generated by
rotating the object around the vertical axis. We use 10 objects
for the evaluation of our approach, which results in 720
CCHs.

As mentioned earlier, the maximum error emax and the
termination criterion are crucial for the number of nodes that
are generated by the GNG algorithm. In the following, our
choice of these parameters is explained.

To verify if the network has converged, the overall error
E(t) of the network is monitored for each iteration t.
The overall error can be determined by summing up the
accumulated errors of all nodes:

E(t) =
r∑

x=1

enx(t) (9)

The overall error is smoothed by calculating the mean overall
error M(t) over the last 200 iterations. This helps in coping
with local peaks in the course of the error over the iterations.
To detect the convergence of the network, we check if M(t)
is in a defined range r for a minimum number of iterations
Δt. The termination criterion c(t) is defined in the following
way:

c(t) =
{

0 a ≤ M(t − t0) < b; 0 ≤ t0 < Δt; b − a < r
1 otherwise

We choose a range of r = 5000 and set the minimum
time the mean overall error has to stay in this range to
Δt = 500 iterations. Figure 3(a) shows the development
of the overall network error E(t) and the mean error M(t)
during one training phase. Every time the accumulated error
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(a) Overall network error during one training phase. The upper and lower
bounding from the termination criterion are denoted with horizontal lines.
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Fig. 3. Results from the parameter evaluation

of one node exceeds emax the accumulated error is adjusted
and a new node is inserted. This results in a diminution
of the overall error. On new input data, the accumulated
error of both nodes increases again. The overall error of a
network containing more nodes can exceed the overall error
of a network with less nodes because each single node can
accumulate an error of up to emax. The termination criterion
terminates the training, if the error stays inside the range r
denoted by the two horizontal lines.

In order to determine the maximum node error emax for
our experiments, two measures were observed using a range
of emax ∈ [10000 : 50000]. First the mean number of
labels per node L was observed. Furthermore, the mean
number of labels per object I was observed. In figure 3(b)
both measures L and I are recorded. The graphs show that
with a large emax, the mean number of labels per node
decreases fast. With decreasing emax, the gradient of L
reduces. The number of nodes per object I grows about linear
with decreasing emax. A suitable choice of emax should
reduce the number of labels produced per node, since this
decreases the uncertainty during recognition. Furthermore,
not too many nodes per object should be generated, since the
resulting representation has to be compact. For this reason, a
maximum accumulated error of emax = 25000 was chosen
for our experiments. The choice of a maximum accumulated
error less than 25000 would result in the generation of more
nodes without significantly decreasing the number of labels
per node.

IV. EXPERIMENTAL RESULTS

In our experiments, the GNG algorithm proved to be very
stable. For the 10 objects with 720 views the number of
nodes usually converged to 19. Depending on the sequence
of the random selection of input data that was exposed to
the network, occasionally 18 or 20 nodes were created.

Fig. 4. Important views of objects as extracted by our approach. Only
views corresponding to an activation ai,x above 20% are shown.

A. Keyframe Selection

The GNG network produces clusters of similar views and
corresponding nodes with object labels Li and activations
Ai. The node positions do not exactly correspond to object
views. In order to visualize important views for the objects,
the nearest neighbor from the set of samples for each object
x which is in the list of labels Li is identified. Views are
reported only if the activation ai,x from the list of activations
Ai is above a given threshold. Thus, only those views are
reported that are produced by clusters where the object
participates with a significant amount of views.

Figure 4 shows the important views produced by our
approach with a threshold of ai,x > 0.2. The selected views
depend on the used feature extraction method. Using a color
descriptor like CCH results in the selection of views which
are stable in terms of color.

3241

Authorized licensed use limited to: Universitatsbibliothek Karlsruhe. Downloaded on November 7, 2008 at 10:58 from IEEE Xplore.  Restrictions apply.



Fig. 5. During recognition, the orange on the left side can be identified
uniquely. The can on the right side is associated to a keyframe with two
labels. The connections are tagged with the corresponding activations ai,x.
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Fig. 6. Percentage of views of all 10 objects in relation to the number of
similar objects associated.

B. Recognition

In the recognition phase all object views are associated to
the corresponding keyframes. Figure 5 shows two examples
of associated views. In the first case, the view was associated
to a keyframe which containes only one label. In the second
case, the keyframe contained two labels. The keyframes are
visualized with the corresponding closest views for each
label contained in the label list. The connections are tagged
with the activations ai,x.

In order to provide a measure on how our approach
reduces the uncertainty about the perceived object, we as-
sociate all object views to their keyframes. For each view
the uncertainty can be expressed with the number of similar
objects obtained from the label list. Figure 6 shows the
percentage of views in relation to the number of similar
objects. 6% of the object views are associated to keyframes
which contain only one view and thus can be uniquely
identified. 80% of the views are associated to keyframes
which contain two or three labels. The remaining views are
associated to keyframes with four and more views. The mean
number of similar objects per view is about 2.7.

V. CONCLUSION

The proposed approach allows for the extraction of
keyframes on the basis of similarities among objects. For 10
objects with overall 720 views we were able to reduce the
number of stored features for one modality to only 19. The
experiments show, that with these 19 features, the potential
candidates for a perceived object can be reduced to 2.7 on
average.

An artificial perception system for a cognitive robot has to
rely on more then one modality to identify and classify the
manifold of different object types it encounters in real world
tasks. The proposed approach will be used in conjunction
with a combination of different descriptors for the object
appearances. Despite the mentioned CCHs we plan to apply
the same approach to other feature extraction methods eg.
Zernike Moments. If chosen accordingly, the combination
of different modalities will allow to identify the perceived
objects uniquely.

Finally, the system will be implemented on our humanoid
robot to ease the acquisition of objects during exploration of
the environment.
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