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Abstract— Daily life objects reveal natural similarities, which
cannot be resolved with the perception of a single view. In
this paper, we present an approach for object separation
using active methods and multi-view object representations. By
actively rotating an object, the coherence between controlled
path, inner models, and percept is observed and used to reject
implausible object hypotheses. Using the resulting object hy-
potheses, pose and object correspondence are determined. The
proposed approach allows for the separation of different object
candidates, which have similar views to the current percept.
With the benefit of active methods the perceptual task can be
solved using even coarse features, which facilitates a compact
multi-view object representation. Furthermore, the approach is
independent from a specific visual feature descriptor and thus
suitable for multi-modal object recognition.

I. INTRODUCTION

In this work, we present an approach, which solves a task
that is natural to humans. A humanoid robot which acts in
a natural environment has to cope with a large variety of
different objects. In order to perceive the surrounding world
in a robust manner, the robot has to be able to learn, classify
and act on objects encountered in the environment accord-
ingly. The number of different objects imposes a challenging
problem for the research in machine vision. Many approaches
concerned with object recognition are restricted to a small
number of objects and are also restricted to objects that are
separable with the feature extraction method deployed. Since
visual perception is one of the building blocks of cognition,
this restriction hinders the application of cognitive systems
in real environments. Inference and reasoning usually require
a large set of examples, which covers the variety of percepts
required to solve a cognitive task.

One typical problem when dealing with a large number of
objects consists in the natural similarities of daily life objects.
Many objects can not be discriminated when observed from
one unique view point using a single feature descriptor. There
are two different approaches to cope with this fact. One
possibility consists in the integration of different modalities
and sensors to reduce the uncertainty that is imposed by
the similarities ([1], [2]). Another possibility consists in the
active exploration of objects in order to determine the correct
correspondence between acquired object representation and
perceived world. In this paper, we present an approach,
which uses active vision to reduce the uncertainty deriving
from similarities in the world surrounding. Within a coupled
action-perception framework, the robot generates as much

object views as neccessary to narrow the number of cor-
respondences between object representations and perceived
object to one candidate.

Since the active vision paradigm was introduced ([3], [4],
[5]), the availability of humanoid robot systems with distinct
manipulation capabilities has opened the possibility to study
and implement active methods in real environments. Recent
research focuses on solving some ill-posed problems in
machine vision with active methods. Fitzpatrick et. al use the
manipulator of a robot to gain an initial idea of the presence
and shape of an object [6]. Omrcen et. al propose a control
scheme and an active vision approach, which addresses the
problem of figure-ground segmentation [7].

In the work introduced in this paper, an active approach
for object separation is presented, which has been designed
for the implementation on a humanoid robot platform.

The next section will introduce the underlying principles
from cognitive science and neuroscience, which were taken
into consideration during the development of the approach.
The subsequent section gives a brief overview of the different
modules of the proposed system. The algorithm used for
interpretation of the current percept will be explained in
Section IV. Finally, experimental results are presented and
discussed.

II. GUIDING PRINCIPLES

In the following section some of the guiding principles in
the development of the system are presented. All principles
stand in line with the conviction that perception systems
aimed for the application in cognitive systems should agree
with the basic findings of cognitive science and neuroscience
in the past years. Here we present principles which directly
influence the approach, explain to what extent, and give
references to work which focuses on similar aspects.

1) Object representation is based on two dimensional
views: In our work, we use view-based representations of
objects. Psychophysical experiments on humans [8] and on
monkeys [9] have lead to a view-based model of how the
visual system achieves consistent identification of objects.
View-based methods model the object by selected views
rather than by constructing a 3D-model to match the object
in the scene. Logothetis et al. found cells in the macaque
Inferotemporal Cortex (IT) that are tuned to specific views
of an object [10]. Psychophysical studies carried on with
human subjects indicate that object recognition is performed
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Fig. 1. Overview of the system structure. The system couples control and
perception modules via the environment. The interpretation module receives
input from perception and control modules and guides the control module.

around views presented while training [11]. In the approach
proposed in this paper each object model consists of a set of
object views, which are represented by nodes in a spherical
graph. This representation of objects is usually referred
to as aspect graph. In recent research the aspect graph
showed to be a feasible representation for multi-view object
representations. Aspect graphs usually contain prototypical
views of objects, which are used during recognition tasks
(see e.g. [12]). Also the extraction of outstanding views of
objects as prototypes has been addressed in order to facilitate
a more compact representation ([13], [14]). The problem of
pose estimation using a combination of local features and
aspect graphs is discussed in [15].

2) Representations should allow for multi-modal integra-
tion: One possibility to reduce uncertainty during perception
consists in the integration of different cues for the task of
object separation. There have been many efforts to integrate
different visual modalities [16] and modalities from different
sensors ([1], [2]) into a unified percept. In this paper an ap-
proach is proposed that facilitates the integration of different
visual modalities. Feature descriptors can be used with the
approach if they are global and rotationally invariant in the
viewing plane.

3) Sensory memory is transient and of limited capacity:
The model of human sensory memory has been introduced
with the Atkinson-Shiffrin memory model [17]. Sensory
memory contains rich sensory information and is transient.
The proposed system accounts for this model in the sense
that rich sensory information is only stored in order to be
processed immediately. The approach is designed in a way
that, despite the inner models, only the features from the
current percept are required for processing.

III. SYSTEM DESCRIPTION

Figure 1 shows the structure of the proposed system.
The control module guides the pose of the object using the
manipulator of the robot. In simulation, the control module
updates the rotation of the object model. The perception
module provides the feature extraction methods. In this work
global features are extracted from the current percept. The
interpretation module validates the coherence between object
candidates, percepts and the currently controlled movement.
For this purpose path hypotheses are generated on the surface

of the viewing sphere and compared with the controlled
path. From the path hypotheses the poses between controlled
path and object candidates are estimated. Using the pose
estimates, the best separating view among object candidates
is determined and the controlled movement is adjusted
accordingly. Object separation is performed using quality
ratings for path hypotheses. Since the movement approaches
a view which is ideally valid for one distinct object, only
path hypotheses belonging to that object will be plausible
and rated accordingly.

All three parts of the system run at different speeds.
The interpretation module runs at about 3-5 Hz. Each time
an iteration has been completed, the feature of the current
percept is requested from the perception module. The timing
of the control module is independent. In the experiments a
new movement is initiated every second.

As feature descriptor color cooccurrence histograms
(CCHs) are used throughout the experiments. CCHs offer
some properties, which allow the application in real world
recognition tasks as they combine texture information in
terms of the distribution of pixel pair colors as well as
color information. The resulting description of the objects’
appearance is invariant to rotation in the viewing plane
and robust to scaling. For a more detailed description the
reader is referred to [18]. In our work CCHs based on red
and green color channels as well as on the gradient image
of red and green color channels are used. The resulting
feature vector of 320 dimensions describes the appearance
of one object view. With this compact descriptor, the CCHs
only exhibit coarse information about the object appearance.
Nevertheless, as will be shown in the experimental results,
using the combination with active methods, the CCHs are
descriptive enough to perform object separation.

A. Building the model

Prior to object separation using the proposed approach,
object models in the desired form are generated. Object
models consist of aspect graphs with features corresponding
to the views associated to each node. The views are gen-
erated in simulation by rotating a 3D model of the object
and sampling views at equidistant positions. To encode the
neighbour relationship between nodes in the aspect graph,
Delauney triangulation is performed. All extracted views are
processed with the feature extraction method. As the inner
model for objects, the extracted features for each view, the
node positions, and connections are stored.

B. Perception Module

The perception module extracts descriptors from the ap-
pearance of the currently perceived object. Since background
subtraction is not necessary in simulation, CCHs are directly
extracted from the current view of the object.

C. Control Module

The control module generates views at different viewing
angles by rotating the object and makes them available
to the perception module. In all our experiments we start
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Fig. 2. The initial algorithm connects nodes to the path hypothesis which
are neighbours of the last node nl and similar to the current view generated
by the controlled path pc.

moving from an arbitrary starting position and in an arbitrary
direction. Once the most separating view of the object
candidates is determined within the interpretation module,
control is guided towards this view.

D. Interpretation Module

The interpretation module validates the coherence between
object candidates, current percepts and the controlled move-
ment. Path hypotheses are calculated on the surface of the
viewing sphere and rated according to their similarity to the
controlled path and the current percept. The transformation
from controlled path to path hypotheses can be determined
and used as a pose estimate. Once the transformation of all
object candidates has been calculated, the control movement
is guided towards the most separating view. Through the
rating of the path hypotheses, the best correspondence for
the current percept is calculated within the object candidates.

IV. PATH HYPOTHESES GENERATION

In order to separate between multiple object candidates the
ability of a humanoid robot to actively rotate objects in front
of its vision system is exploited. While rotating, the current
percept of the object changes and reveals new object views
at different aspects. Given the controlled rotation and the
sequence of object views, path hypotheses are calculated on
the surface of the viewing sphere for all object candidates. In
the following, the approach for path hypotheses generation
is described.

A. Initial Algorithm

Each path hypothesis pi is expressed by a sequence of
nodes in the following way:

pi = (((α0, β0), c0), . . . , ((αN−1, βN−1), cN−1)), (1)

where α describes the rotation of the node around the vertical
axis and β around the horizontal axis. The value cm describes
the number of percepts, which have been valid for the
path element m and is referred to as hit counter. From the
sequence of rotations executed by the control module, the
controlled path pc is determined in a similar way. The angles
α and β describe the currently controlled rotation, the hit
counter cm for each path element of the controlled path pc
is set to one.

In the course of rotating, path hypotheses on the viewing
sphere of the object candidates considering the feature of
the current view are determined. Algorithm 1 describes the
initial idea on how to generate path hypotheses:

Input: current views, object candidate models
Output: path hypotheses P = {pi}
{pi} = searchExhaustive(current view, models);1

while !converged do2

{pi} = selectBest({pi},Nhypo);3

foreach Path pi do4

nl = lastNodeOfPath(pi);5

{nj} = neighbours(nl);6

{nj} = {nj} ∪ nl;7

nb = mostSimilarw0(current view, {nj});8

if nb == nl then9

increaseHitCounter(nl);10

else11

appendNodeToPath(pi,nb);12

end13

end14

converged = determineConvergence({pi});15

end16

Algorithm 1: Initial algorithm for path hypotheses gener-
ation

The feature of the current view and all object candidate
models are made available as input to the algorithm. In the
beginning, all features of the object models are traversed
and compared with the extracted feature of the current view.
Only the Nhypo best matches are stored in the set of path
hypotheses P . In each iteration, the last node nl of each path
pi is considered. With the edges stored during the model
building step, the neighbours of nl are identified. The stored
features of all neighbours nj including the last node nl are
compared to the input feature. The most similar node nb is
determined using the similarity measure w0 for the feature
extraction method used. If the most similar node corresponds
to the last node of the path nl, the hit counter of nl is
increased. Otherwise, the most similar node nb is appended
to the path pi.

Figure 2 illustrates how the algorithm searches for new
nodes. In this example, the object has already been rotated
according to the controlled path pc. During rotation, the path
hypothesis is extended from an initial node to two connected
nodes. In each iteration, the algorithm searches in the set
of nodes connected to the path’s last node nl for the most
similar view. If the most similar view is not the last node,
the path is extended accordingly.

Figure 3(a) shows the results of the initial algorithm using
Nhypo = 50 after rotating an object 70 degrees around
the vertical axis. The generated hypotheses are distributed
over the viewing sphere, the control path could not be
approximated. This behaviour results from the similarity of
CCH features of neighbouring nodes. While the controlled
path moves away from the starting node, the current percept
is similar to a large amount of nodes, which results in
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(a) Initial Algorithm (b) Particles Algorithm (c) Loop Elimination (d) Similarity Accumulation

Fig. 3. All 50 path hypotheses for the four different variations of the algorithm. The object was rotated 70 degrees around the vertical axis. The controlled
path pc is displayed in red. All path hypotheses have been transformed according to the estimated pose.
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Fig. 4. Transformation of the path (s1, e1) into the path (s2, e2). First
a rotation around the z-axis with angle α is performed until the projection
into the xy-plane of the startingpoints s1, s2 are collinear with the sphere
center. Then a rotation with the angle β is performed in order to tranform
s1 to the position of s2. Finally the rotation ψ is performed to ensure that
the transformed endpoint e1′′ lies on the same arc as s2 and e2. Note that
only relevant parameters are depicted in the figure.

the generation of spurious paths. Once a path is generated
that leads to an incorrect direction, the algorithm cannot
backup to the correct path, since only neighboured nodes
are considered.

In the following we will explain how the initial algorithm
was adapted in order to deal with coarse features like CCHs.
All adpations were accomplished taking into account the
guiding principles presented in section II.

B. Hypothesis generation using Particles

In the initial algorithm the knowledge of the controlled
path pc was not considered. Path hypotheses are only gen-
erated on base of the similarity of features from the current
percept and nodes of the object models. Since the controlled
path is known, path hypotheses can be rated according to
their similarity not only to the current view, but also to the
course of the controlled path. To establish a rating for the
quality of the path course, the similarity between controlled
path and each path hypothesis is determined.

In order to obtain comparable paths, the rotations required
to transform a hypothesis path to the controlled path are
calculated. Figure 4 illustrates how a path hypothesis with
starting point s1 and end point e1 is transformed into the

controlled path with starting point s2 and end point e2. Three
rotations with different rotation axes are performed. The first
two rotations with the angles α and β ensure that the starting
points of both paths coincide. The third rotation with the
angle ψ assures that the transformed starting point s′′1 and
end point e1′′, the starting point s2, and the end point e2 lie
on the same arc of the viewing sphere.

Overall the complete transformation ti can be described
with the following parameters:

ti = (α, β, ψ, �rβ , �rψ), (2)

where �rβ , �rψ are the axes for the rotation with β and ψ
respectively. The initial rotation α is performed around the
z-axis.

Once the transformation has been determined, the simi-
larity between hypothesis and controlled path is calculated.
In order to compare paths according to their elements, it is
ensured during the composition of the controlled path that
the overall number of hits of hypothesis path and controlled
path is identical. This is achieved by adding one element to
the controlled path once a new iteration of the hypothesis
generation is started and setting the hit counter to one. Let
h(p, e) be the function that returns the path element, which
is valid at the time of the e-th hit. The similarity of the path’s
course is calculated in the following way:

w1(pc, pi) =
∑H−1

e=0 dti(h(pc, e), h(pi, e))
H

, (3)

where H is the sum of hits over the complete path and dti
the distance of the transformed element on the path pi and
the corresponding element on the controlled path pc.

In order to integrate the path course rating, an approach
similar to particle filtering is deployed. In a hypothesis
generation step, different hypotheses referred to as particles
are generated. In a verification step, the best particles are
determined and kept for the next iteration of the algorithm.
The initial algorithm is altered in the following way. Instead
of appending the most similar node to a hypothesis path
(Alg. 1 line 12), particles are generated for each neighbour
of the last node nl and the hit counter of the node nl in
the currently considered particle is increased. After all path
hypotheses have been generated, the similarity of the path
courses with the controlled path w1(pc, pi) is calculated.
Furthermore, the similarity of the last new node nl of each
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path hypothesis with the current view is determined using the
similarity measure w0. In order to combine both measures
independent from their actual values, all path hypotheses are
inserted into one priority queue for each measure. The overall
rating is calculated by the mean position of the hypotheses
in both queues. Since the number of generated hypotheses
is increased with this approach, only the Nhypo hypotheses
with the best overall rating are stored for the next iteration.

Figure 3(b) illustrates all path hypotheses after applying
the adapted algorithm to a rotation of 70 degrees around the
vertical axis. The course of the generated paths still differs
from the controlled path. Again the similarities between
neighbouring nodes lead to the generation of spurious path
hypotheses. The similarity measure w0 causes the paths to
loop between similar nodes which results in a poor rating
using the measure w1.

C. Loop Elimination

In order to take this behaviour into consideration, a loop
elimination step is integrated into the algorithm. With the
restriction to loop free control movements, all segments of
a path that have the same start and end node are removed.
In a second step multiple occurrences of the same path are
eliminated. This is necessary to keep the number of required
hypotheses small. Figure 3(c) illustrates the resulting hy-
potheses after applying loop elimination and the removal
of identical paths. The generated hypotheses form a good
approximation of the controlled path.

D. Similarity Accumulation

Until this point, only the similarity of the last node of
each path hypothesis and the current view were considered
for the rating of path hypotheses. In order to improve the
approximation of the controlled path, the best similarity
encountered while rotating the object is stored for each
node. These best similarities can be accummulated in another
measure

w2(pi) =

∑N−1
j=0 b(nj)
N

, (4)

where N is the number of nodes of path pi and b(nj)
denotes the best similarity of an input view to node nj as
encountered while rotating. The measure w2 is integrated
with the measures w0 and w1 in the same way as de-
scribed above to generate an overall path hypothesis rating.
The resulting paths after integrating similarity accumulation
are illustrated in Fig. 3(d). The visible difference between
the outcome with and without similarity accumulation is
marginal. Nevertheless in the results section we will show
how the convergence of the algorithm can be improved by
introducing the measure w2.

E. Object Separation

In order to calculate the best separating view between
objects, the relative pose between the object candidates is
required. This pose is derived from the transformations of
the path hypotheses to the controlled path. The calculation
of the best separating view is initiated, once the running

variance of the mean transformation of all path hypotheses
is below a threshold. For all object candidates, the running
variance is calculated using the mean rotation angles α, β
and ψ over all path hypotheses. A window size of 5 is used
for the running variance and the sum of the variances of all
three angles is used to establish a threshold for convergence
of the transformation. The relative pose is approximated by
the mean of all rotation angles for each object candidate.

With the relative pose, the aspect graphs of all object
candidates are transformed into one common base coordinate
system in order to calculate the similarity graph. The nodes
of each object candidate are associated to the closest nodes of
the similarity graph with respect to the common coordinate
system. In order to derive a measure for the similarity of
corresponding nodes, the variance of the features from the set
of associated nodes is calculated and stored in the similarity
graph. Figure 5(a) illustrates the similarity graph for two
object candidates with different textures on their backsides.
The most separating view is determined using the variance
stored within nodes in the similarity graph. In order to
account for inaccuracies in the pose estimation, the mean
of the variances of each node including its neighbours is
considered and the node with the highest mean variance is
chosen as most separating view.

Since the transformations between controlled path and
object candidates are known, the position of the best sep-
arating view is available in the control coordinate system.
The shortest path between the current view and the best
separating view is calculated and the movement is adapted
accordingly.

In order to separate between object candidates, the rating
of the best path hypotheses for each object candidate is
considered. Figure 5(b) illustrates the estimated path for a
valid object candidate. The controlled path is approximated
well, which results in a good rating. In Fig. 5(c) the backside
of the object was exchanged compared to the inner model.
Once object views are generated that are not corresponding to
the inner model, the algorithm will not be capable of finding
a good approximation to the controlled path. This results in
a poor path rating, which is exploited for object separation.

V. EXPERIMENTAL RESULTS

All results in this paper were achieved in simulation.
Block-shaped object models were used to generate views
at desired viewing angles. The application of block shapes
does not imply a simplification for the approach. Since the
algorithm has to cope with planar surfaces, many neigh-
bouring views of one object look similar and thus do not
reveal information which can be exploited to generate path
hypotheses.

All inner models were represented with aspect graphs con-
sisting of 100 views. The number of maximum hypotheses
per iteration was set to Nhypo = 50. Both parameters were
chosen empirically prior to the experiments. The approach
was evaluated using randomly selected starting points in
spherical polar coordinates in all experiments. All inner
models were transformed using random rotation axes and
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(a) Similarity graph as calculated from two object
candidates and related estimated poses.

(b) The best path hypothesis for the correct object
candidate approximates the controlled path pc.

(c) The best path hypothesis for the incorrect object
candidate does not converge to the controlled path
pc.

Fig. 5. Object Separation

angles. The initial direction of the movement was also
selected randomly with constant increments in the azimuth
and zenith in spherical polar coordinates. By using spherical
polar coordinates, it was ensured that not only straight paths
were generated.

A. Path hypotheses accurracy

The parameters for path hypotheses convergence were
chosen in a way that the generated pose estimates are accu-
rate enough to identify and reach the most separating view.
During model building, the viewing sphere was discretised
to 100 views. The mean angle between neighbouring views
amounts to 22.6 degrees. This gives a benchmark to select
the thresholds for convergence accordingly.

Figure 6(a) illustrates how the different variations of the
initial algorithm perform in comparison. The results were
achieved using views of the same model for the represen-
tation as well as for the view generation in order to allow
convergence of the path hypotheses. To capture the correct
trend for the different approaches, 100 runs with random
starting points and transformations were performed for each
variation. The graph shows the development of the sum of
mean running variances over the three rotations measured
during 100 runs. The initial algorithm does not converge
to a robust object pose estimation. With the introduction of
particles the pose estimation performs better but settles down
at a very high variance. The restriction to loop free paths
results in much more accurate approximations of the con-
trolled path on the surface of the viewing sphere. Combined
with the elimination of similar paths this approach converges
very fast. The accumulation of views also improves the
convergence of the hypotheses.

To measure the accuracy of the pose approximation pro-
cess, the mean pose error was calculated for 100 runs. Each
run was limited to 400 iterations. If the path hypotheses did
not converge after 400 iterations, the run was marked as
failure and the pose estimation was not considered. In eight
out of the 100 runs failures occurred because the randomly
chosen controlled path was close to the singularities of the
spherical polar coordinate system. In this case, only few very
similar views were presented to the system, which are not

sufficient to allow detemining a stable estimate. The resulting
mean pose error using the remaining 92 runs amounts to
14.89 degrees, which lies within in the desired accuracy of
22.6 degrees.

B. Object Separation

To evaluate object separation, two pairs of object models
were deployed. In each pair, the backside of the objects
differed. One of the objects from each pair was used as
input and both objects of one pair were stored as inner
models. The task consisted in the identification of the correct
correspondence for the input object.

In Fig. 6(b) the path rating measure w1 for the best path
hypothesis is shown for both object candidates over the
iterations until the movement reached the most separating
view. Once a view is revealed which is not coherent with
one of the object candidates, the distance between controlled
path and best path hypothesis increases immediately. This
circumstance is deployed to discriminate between the object
candidates. We assign a perceived object to an object candi-
date if its overall path rating is 5 times better than the path
rating of the remaining object candidates.

Using this threshold, 100 separation tasks were performed.
For each task the convergence of the pose estimation and the
calculated correspondence were determined. In the 100 test
cases, the object was assigned to the correct object models
with only the path course rating w1 in 88% of the cases. In
the remaining 12% of the cases, the path course rating alone
was not sufficient to separate between the object candidates.
With the help of the similarity rating for the current percept
w0 and the view accumulation rating w2, 93% of presented
objects could be assigned to the correct object candidate.
The remaining 7% of tries failed because of controlled
movements close to singularities resulting from the random
choice of starting view and movement. Singularities can be
avoided by restricting movements to be far from singularities,
which reveal the necessary amount of object views.

C. Performance

All experiments were accomplished using an Intel Cen-
trino Duo 2.0 GHz notebook. The interpretation module
achieved a cycle time of about 3-5 Hz. As in most vision
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Fig. 6. Experimental results using the proposed approach.

applications, feature extraction and comparison is the most
time consuming task. Compared to a brute-force algorithm,
where in each iteration the 100 nodes of the complete inner
model are compared with the current view, the hypotheses
generation reduces the necessary feature comparison. Figure
6(c) illustrates the number of comparisons between different
features required in relation to the number of iterations of
the algorithm. Initially the complete neighbourhood of all
candidate views has to be examined. Once path hypotheses
develop, only the neighbouring nodes of the last path element
have to be examined. Since the pose converges towards the
same controlled path, many hypothesis paths have the same
last nodes and examine the same neighbours. This helps
reducing the required feature comparisons to about 14 when
the hypotheses converge.

VI. CONCLUSION

In this work, an active vision approach for object separa-
tion and pose approximation is presented. The experimental
results show that the proposed approach allows to reliably
separate between multiple object candidates. Also it has
been shown that the transformation from the path hypotheses
to the controlled path gives a good approximation of the
object pose. Both results, pose and object correspondence,
are achieved within the same framework only on basis of the
coherence between controlled movement and percept. With
the proposed approach good performance is achieved using
a coarse feature descriptor, which allows to keep the inner
models of objects compact. Each object is described by only
32000 feature values. This reveals the benefit that can be
obtained by using active methods in solving visual tasks.
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