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Abstract— The visual perception system of humanoid robots
should provide sensorial information that fulfills the require-
ments imposed by perceptual tasks in natural environments.
One prerequisite for such systems is the ability to observe the
environment by actively moving its visual sensors. This ability
allows to implement two essential behaviors for a cognitive visual
system: smooth pursuit and saccadic eye movement.

In the work presented in this paper we propose a kinematic cal-
ibration approach for the active camera system of the Karlsruhe
Humanoid Head. The proposed method solves two fundamental
problems when performing saccadic eye movements: the required
kinematic model for open-loop control and the ability of stereo
reconstruction with active cameras. We present experiments on
the accuracy of the kinematic model, the stereo triangulation and
the saccadic eye movement.

I. INTRODUCTION

Most current humanoid robots have simplified head-eye
systems with a small number of degrees of freedom (DoF). The
heads of ASIMO [1], HRP-3 [2] and HOAP-2 [3] have two
DoF and fixed eyes. However, humanoid systems that are able
to execute manipulation and grasping tasks, that interact with
humans and learn from human observation require sophisti-
cated perception systems, which are able to fulfill the therewith
associated requirements. The Karlsruhe Humanoid Head [4]
(see fig.1) used in this work offers an active vision system
with two cameras, which can be moved independently. This
ability is usually exploited to implement behaviors that are
essential to common visual perception tasks, namely smooth
pursuit and saccadic eye movements. A similar active head is
used on the humanoid robot CB [5] for which a calibration
procedure has been proposed in [6] to enable 3D vision and
foveation.

The smooth pursuit behavior (also called fixation or track-
ing) consists in focusing on a known combination of visual
stimuli, e.g. the face of a person during interaction. The
common control strategy deployed in such behaviors is closed-
loop control, where the prior knowledge of the visual stimuli
is exploited (see e.g. [7]).

Saccadic eye movements play an important role in the seri-
alisation of visual information processing within a perceived
environment. Saccadic eye movements are usually initiated
by attention mechanisms, in order to focus on salient parts
of the scene. In such mechanisms, the target of the saccade
is determined by the spike of a single neuron ([8],[9]). The
information necessary for closed-loop control is not available.
Consequently, open-loop control strategies have to be provided
in order to execute saccadic eye movements.

Fig. 1. The Karlsruhe Humanoid Head offers an active camera system.

Another problem arising from the application of active
stereo camera systems is the ability of performing stereo
reconstruction. When working with fixed eyes, the stereo
calibration required for stereo triangulation is fixed and only
has to be calculated once. In contrast the calibration for active
stereo camera systems varies with each actuation of the eyes
thus making static stereo calibration impossible.

In this work we present a new method for kinematic
calibration of an active camera system which solves the
problem of open-loop control for saccadic eye movements as
well as the stereo calibration problem with actuated cameras.
The calibration procedure results in a kinematic model which
allows to solve the inverse kinematics problem for the eye
system required for saccadic eye movements as well as the
calculation of the stereo calibration required for stereo vision.

The paper is organized as follows. In Section II an overview
of the different approaches for the problem classes of head-
eye and hand-eye calibration in the literature is given and
the approaches are analyzed according to their feasibility for
our problem. In Section III a brief description of the system
configuration is provided. Section IV describes the proposed
approach for kinematic calibration. In Section V, the proposed
method is evaluated on the Karlsruhe Humanoid Head. We
provide experiments on the accuracy of the kinematic model
itself, the accuracy of the stereo calibration and the accuracy
of saccadic eye movements.



II. RELATED WORK

The literature offers a variety of methods to solve the
two related problems of head-eye and hand-eye calibration.
Most of them are based on the traditional AX = XB
and AX = ZB formulations of correspondences between
coordinate frames in the system to be calibrated.

The AX = XB formulation arises from the problem of
head-eye calibration. In this case A denotes the coordinate
transformation between two distinct camera positions when
moving the camera by a transformation B of a joint. X denotes
the unknown relationship from the actuated joint to the camera
which is to be determined.

The AX = ZB formulation has been proposed for the
case of hand-eye calibration problems. Here A describes the
transformation from the camera to the world frame. B denotes
the transformation between the robot’s hand coordinate frame
and the base coordinate frame. The unknowns to be determined
are the hand-to-camera transformation X and the base-to-
world transformation Z.

Considering different methods which make use of the
AX = XB and AX = ZB formulations, there are two
essential decisions to be made when developing a method
based on them. First, there are different possibilities to model
the rotational parts of the involved coordinate transformations.
The proposed models comprise Euler angles and quaternions
as well as representations using a rotation axis and an angle
or such based on Lie theory. The second decision concerns
the mathematical method, which is used to actually find a
solution for the unknown coordinate transformation, given its
representation. Most solutions are based on linear or non-
linear least squares optimization methods. Other approaches
suggest the use of Lagrange multipliers or avoid any kind of
optimization.

Some of the most important contributions in the field can be
categorized in the following way. Tsai and Lenz [10] use an
axis-and-angle representation for the rotation matrices. They
solve separately for rotation and translation and present a
linear least squares solution for both. Shiu and Ahmad [11]
use a similar representation as Tsai and Lenz but develop a
different linear solution. Li’s method ([12],[13]) uses rotation
matrices to model the problem. In his experiments, these
matrices are based either on Euler angles or quaternions. He
uses a non-linear optimization approach for the rotational part
and a linear least squares approach for the translational part.
The method by Neubert and Ferrier [14] uses Lie theory to
model the problem and solves simultaneously for rotation and
translation using a linear least squares approach. Horaud and
Dornaika [15] present two methods, both of them based on
quaternion representations. One is a closed-form approach
using Lagrange multipliers. The other one is a non-linear least
squares approach which solves for all unknowns at once. A
completely different approach is presented by Young [16].
He does not refer to the AX = XB and AX = ZB
formulations. Instead he uses a combination of a modified
Denavit-Hartenberg (DH) convention and screw theory. No

optimization is required. The method calibrates one joint at
a time and can be used for any type of kinematic chain.

There are several papers which provide comparisons of the
mentioned approaches to determine which method produces
the most accurate results. Horaud and Dornaika [15] compared
a linear and a non-linear least squares approach as well as an
approach using Lagrange multipliers. Li [13] compared linear
least squares approaches by Dornaika [17] and Tsai [10] with
his own non-linear least squares approach. The results can be
summarized as follows. The representation of the unknown
rotation does not seem to be essential. In comparison the
choice of the method to solve for the unknowns has a more
significant impact on calibration precision. Non-linear least
squares methods yield the most accurate results which is
attributed to the degrading performance of linear least squares
methods in the presence of noise. The downside of approaches
that solve separately for rotation and translation is the fact that
in these two-step methods the error propagates from the first
part to the second part. Therefore it is reasonable to estimate
all unknowns simultaneously.

Consequently, an advantage of the AX = XB and AX =
ZB formulations is the fact that one does not have to resort
to sophisticated representations of rotations. Simple represen-
tations like Euler angles provide very good results. However,
there are some serious disadvantages. As proved several times
([10],[11],[18]), the equations AX = XB and AX = ZB
have two degrees of freedom. A unique solution can only be
found if two rotations around non-parallel axes of rotation
are performed. This means that single joints with only one
degree of freedom can not be calibrated. Each joint must
have at least two degrees of freedom. An elegant solution
to this issue is to combine two joints with one degree of
freedom each and to treat them as one single joint with two
degrees of freedom. Although most authors do not explicitly
state it, this is only possible if the axes of the two respective
joints intersect, because only this way a single common
coordinate frame for both joints can be assigned to the point
of intersection. Therefore the class of kinematic chains that
can be calibrated using this approach is restricted. But even
kinematic chains which according to the design schematics
fulfill this condition may, due to production imprecisions, in
practice not be accurate enough. In this case the simplifying
assumption of intersecting joint axes is in fact a methodical
error, resulting in inferior calibration accuracy.

The approach by Young [16] is more universal. Based
on the Denavit-Hartenberg convention, it can be applied to
any kind of kinematic chain. No simplifying assumptions are
made. Therefore it should yield more accurate results than
the approaches described above. Moreover, no optimization of
any kind is used. However, the Denavit-Hartenberg convention
always assigns the z axes to the axes of rotation or translation,
which might not always be desirable.

In this paper an approach is suggested that combines the
advantages of AX = XB based methods and a DH-based ap-
proach. In contrast to the DH convention, the rotation axes are
not necessarily assigned to the z axes which allows to choose



arbitrary coordinate frames for each joint. No simplifying
assumptions are made concerning the relationships between
adjacent joints. The proposed method avoids to consider two
or more distinct joints as one joint with multiple degrees of
freedom. Instead, every single joint is calibrated separately.
That way the proposed approach can be applied to a wider
class of kinematic chains. An AX = XB based formulation
is used to derive a non-linear target function that is minimized
using the method by Levenberg and Marquardt [19]. For each
joint to be calibrated, all necessary unknowns are estimated
simultaneously, avoiding error propagation between them.

III. SYSTEM CONFIGURATION

The Karlsruhe Humanoid Head used for our work has seven
rotational degrees of freedom (see Fig.1). Four of them are
used to move the head: neck roll, neck yaw, neck pitch and
head tilt. The eyes are actuated by a common tilt joint and
two independent pan joints. The vision system consists of
two stereo camera pairs and mimics the foveated structure of
the human eye. Therefore each eye contains one perspective
camera with a wide angle of view and a foveal camera with
a small angle of view. In both cases Dragonfly cameras from
PointGrey are mounted which are accessed via an IEEE1394
interface and provide a maximum frame rate of 30 fps at a
resolution of 640×480 pixels 1. For the experiments presented
in this paper the perspective cameras were used, which were
outfitted with lenses with a focal length of 4 mm.

IV. KINEMATIC CALIBRATION
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Fig. 2. Coordinate systems and transformations involved in the kinematic
calibration procedure.

In this section, a detailed formal description of the proposed
method is given. We proceed in the following way:

First, all involved coordinate systems and transformations
are introduced. Then the acquisition of data for the necessary
extrinsic camera calibration is explained. Based on this data
the kinematic calibration problem is formulated as a non-linear
least squares problem, which is solved using the method by
Levenberg and Marquardt. Having determined the kinematic
calibration of both the left and right eye pan joints, a stereo
calibration for arbitrary angles of these joints can be calcu-
lated.

1http://www.ptgrey.com

A. Coordinate Systems and Transformations

Throughout this paper, the following conventions for coor-
dinate systems and transformations will be used (see figure
2):
• Xw denotes the world coordinate system. It is a fixed

system which is used as a reference to determine the ex-
trinsic camera calibrations. The world coordinate system
is defined by the calibration pattern.

• Xj0 is the coordinate system in the joint j at zero
position. It is fixed.

• Xj denotes the rotated coordinate system of the joint j
after actuation.

• Xc is the camera coordinate frame. As the camera is
rigidly attached to the pan joint, the camera system moves
when the joint is actuated.

• Hj(α) describes the coordinate transformation from the
fixed joint coordinate frame Xj0 to the rotated joint
coordinate frame Xj . As the considered joints have one
degree of freedom, Hj(α) describes a rotation around
the one rotation axis of the respective joint by an angle
α which is obtained from the encoder readings.

• B denotes the transformation from the rotated joint
coordinate system Xj to the camera coordinate system
Xc. As the joint movement is already described by the
transformation Hj , B remains constant, independent of
the actual joint position. The goal of the calibration
process is to determine this transformation.

• F denotes the transformation from the fixed joint coordi-
nate frame Xj0 to the world coordinate system Xw. As
none of these systems moves, F is constant.

• C(α) is the transformation from the world coordinate
frame Xw to the camera coordinate frame Xc. It depends
on the camera position and therefore on the joint angle
α. C is usually called the extrinsic camera calibration.

B. Extrinsic Camera Calibration Data Acquisition

The kinematic calibration process is performed on the basis
of a set of extrinsic camera calibrations C(α1)...C(αn) at
different rotations of the joint to be calibrated. The matrices C
are stored together with the corresponding joint angles α. As
prerequisite for the calculation of extrinsic calibration data,
the intrinsic camera parameters for each camera have to be
determined. For this purpose the intrinsic camera calibration
procedure proposed by Zhang [20] is used.

C. Kinematic Calibration

Once extrinsic camera calibration data has been aquired at
different angle positions of the joint to be calibrated, the goal
of the approach consists in determining the kinematic cali-
bration matrix B. In our approach, the matrix B is calculated
using a non-linear least squares minimization technique. More
precisely the Levenberg-Marquardt algorithm [19] is deployed
to determine B from the set of extrinsic calibrations C and
the corresponding joint angles α. The Levenberg-Marquardt
algorithm minimizes a target function which is derived in



section IV-C.1. The representation and parameterization of the
calibration matrix are discussed in section IV-C.2.

1) The Target Function: The target function which is min-
imized in order to determine the kinematic calibration matrix
B is formulated using homogeneous matrices for all necessary
coordinate transformations. A geometric interpretation of these
transformations is given in figure 2.

The coordinate transformation from the fixed joint frame to
the rotated joint frame is

Xj = HjXj0 . (1)

A transformation from the rotated joint frame to the camera
coordinate frame can be written as

Xc = BXj . (2)

The transformation from the world coordinate system to the
camera coordinate system depends on the position of the
camera and therefore on the angle α of the joint the camera
is attached to. This can be formulated as

Xc = C(α)Xw. (3)

The transformation from the fixed joint coordinate system to
the world reference system is

Xw = FXj . (4)

By combining equations (1), (2), (3) and (4), F can also be
expressed as

F = C(α)−1BHj(α). (5)

As the world coordinate frame Xw and the joint coordinate
frame at zero position Xj0 never change, different transforma-
tions Fi and Fk with

Fi = C(αi)−1BHj(αi) (6)

and
Fk = C(αk)−1BHj(αk) (7)

can be calculated for different joint angles αi and αk, but the
condition

Fi = Fk (8)

always holds.
In practice however, the extrinsic camera calibrations and

the joint encoder readings are not entirely accurate. Due to
these and other errors it is impossible to find a B which
satisfies equation (8). Instead it is the goal to find a B which
minimizes the error

||Fi − Fk||f = ||C(αi)−1BHj(αi) − C(αk)−1BHj(αk)||f .
(9)

In this context ||.||f denotes the Frobenius norm [21]. Let
N be the number of extrinsic camera calibrations determined
using the process described in section IV-B. Furthermore,
let ~x be a parameterization of B and Gr(~x) and Gt(~x) be
the minimization functionals which express the rotational and
translational difference of two transformations Fk and Fk+1

belonging to two external camera calibrations at two adjacent
joint positions αk and αk+1 , i.e,

Gr(~x)k = angle(Fk+1, Fk)
Gt(~x)k = translation(Fk+1, Fk)

Each pair Gr(~x),Gt(~x) describes the rotational and transla-
tional difference between the homogeneous matrix Fk and
Fk+1. To find a solution for B means to solve the minimization
problem

min
~x

N−1∑
k=1

||wrGr(~x)k + wtGt(~x)k||, (10)

where wr and wt are weighting factors for the rotational and
translational parts of the error.

2) Representation and Parameterization of the Calibration
Matrix: The goal of the kinematic calibration procedure is to
assign a coordinate system to the rotation axis of the actuated
joint. In this context two decisions have to be made:
• The representation of the calibration matrix B
• The parameterization of the calibration matrix B

The representation of B describes the mathematical means
used to model the rotational part of the coordinate transfor-
mation B whereas the parameterization of B deals with the
question which components of B actually have to be esti-
mated in order to find a meaningful solution to the kinematic
calibration problem. Both the choice of a representation and
a parameterization of B is necessary to compute the mini-
mization functionals Gr(~x) and Gt(~x) introduced in section
IV-C.1.

For this work a three-angle representation was used for
the rotational part of B. The three elementary rotations were
concatenated using the Roll-Pitch-Yaw convention.

According to [10], [11] and [18], two independent axes of
rotation are necessary to determine all six parameters of B.
When using only one rotation around a single rotation axis,
the problem is under-determined. When doing rotations around
one axis and calculating the extrinsic camera calibrations at
different angle positions, these extrinsic calibrations contain
sufficient information to identify the rotation axis. However,
there is not enough information to determine all components
of the position and orientation of the joint coordinate frame
on this axis. The origin of the coordinate frame on the axis
is not uniquely determined. Furthermore the orientation of the
coordinate frame is only restricted in a way that one coordinate
axis points in the direction of the joint axis, while the other
two coordinate axes can be chosen in a way that the resulting
coordinate frame is a right-handed system.

In order to determine the stereo calibration the exact po-
sitions and orientations of the coordinate frames on the joint
axes are not necessary. For this purpose the partial solution
explained above is sufficient. It is even possible to calibrate
all joints of the head-eye system using this type of partial
solution. If the complete head-eye system is to be calibrated it
is necessary to registrate the last coordinate system in the head
with the world coordinate system. However, the registration



with the world coordinate system is always necessary, no
matter if partial or complete solutions were determined for
the individual joints’ kinematic calibrations. Regarding the
considerations above, arbitrary values can be used for the
two undetermined components of the transformation, always
resulting in a valid calibration matrix B.

As stated above, the parameterization of B also depends on
which coordinate axis is assigned to the joint’s axis of rotation.
If its axis of rotation is the y axis, as shown in figure 3, the
parameterization is ~x = (α, γ, tx, tz), where α and γ denote
elementary rotations around the x and z axes and tx and tz
describe translations along the respective axes. The β and ty
components are not estimated and set to zero.

D. Stereo Calibration

The stereo calibration is required to enable methods of
stereo vision on the Karlsruhe Humanoid Head. In order to use
epipolar geometry to recover 3D positions of corresponding
points from a stereo camera pair, the stereo calibration is
required. For static cameras, the stereo calibration is usually
calculated using the extrinsic camera calibrations of both cam-
eras. The relative position of both camera coordinate systems
Hstereo can be derived directly from the extrinsic calibrations.
Having performed the kinematic calibration as described above
Hstereo can be determined for arbitrary camera poses. This
allows to perform stereo vision if the eye joints are actuated.
First, in order to calculate Hstereo the transformation Hepl2epr

is calculated (see fig. 3) in the following way:

Hepl2epr = H−1
epr(αR) · B−1

R · CR(αR) · (11)

C−1
L (αL) · BL · Hepl(αL).

The matrices BR and BL represent the kinematic calibrations
of both eye pan joints. Hepr(αR) and Hepl(αL) model the
rotations of the respective joints by certain angles αR and αL.
The external camera calibrations depend on the same angles. In
theory the transformation Hepl2epr could be determined at any
position of the two joints. In practice however, modeling the
joints’ movements using Hepr(αR) and Hepl(αL) introduces
errors. Therefore, the most accurate result can be obtained with
both joints at their home positions at αL = αR = 0 where
Hepr(αR) and Hepl(αL) become identity.

The stereo calibration Hstereo for arbitrary joint angles can
then be calculated using the following equation:

Hstereo = BL ·Hepl(αL) ·H−1
epl2epr ·Hepr(αR)−1 ·B−1

R (12)

V. EXPERIMENTAL RESULTS

Prior to the experiments, the optimal distance of the cali-
bration pattern for the kinematic calibration was determined.
Therefore different calibrations were performed with different
positions of the calibration pattern. We used a pattern with
9 × 7 squares, side lenght 3.63 cm each, at distances of
0.50 m, 1.00 m, and 1.35 m from the eye system. For each
calibration, the translational error ∆t between the measured
positions of the calibration pattern and the positions calculated
using the calibrated kinematic model was measured. Table

Fig. 3. The coordinate transformations necessary to determine the stereo
calibration.

I shows the results of the experiments. As expected the
accuracy of the calibration decreases with increasing distance
of the calibration pattern. For the following experiments, we
used a calibration distance of 0.80 m. With this distance the
calibration pattern was still visible with eye pan actuations
between −15 and 15 degrees and eye tilt actuations between
−10 and 10 degrees. For the kinematic calibration we collected
extrinsic data at steps of 1.5 degrees for the pan joints and 1.0
degrees for the tilt joint. Furthermore we evaluated the best
weighting between rotational and translational error for the
optimization. The best results could be achieved for the values
wr = 0.5 and wt = 1.0. With these settings, a rotational error
of 2 degrees corresponds to a translational error of 1 mm.

TABLE I
IMPACT OF THE DISTANCE TO THE CALIBRATION PATTERN ON THE MEAN

MAXIMUM TRANSLATION ERROR ∆t FOR DIFFERENT DISTANCES.

Calibration distance (m) Error ∆t (mm)
0.50 1.49
1.00 3.41
1.35 5.10

In the following we present experiments on the kinematic
accuracy, the stereo accuracy and the accuracy of open-loop
control.

A. Kinematic Calibration Accuracy

In a first series of experiments we investigated how accurate
the kinematic model of the two pan joints is determined
with the proposed method. Therefore we used a smaller
calibration pattern with 5×4 squares, side length 4.5 cm. In the
experiments, we performed arbitrary eye pan movments in the
calibrated range of the eyes. The test pattern was positioned
at distances ranging from 60 cm up to 140 cm from the eye
system. For each distance 50 random test eye poses were
recorded.

In order to determine the accuracy of the kinematic model,
we located the 3D pose of the test pattern in the left and
in the right camera using a model-based approach. Based on
the calibrated kinematic model, both poses were transformed
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Fig. 4. Accuracy of the proposed kinematic calibration. The 3D pose of a test pattern was determined in the left and right perspective camera using a
model-based approach. Both poses were transformed to a common coordinate frame using the calibrated model. The plots show the translational and rotational
error for different distances of the test pattern.

into a common coordinate system and the translational and
rotational errors were measured. Fig. 4 shows the results of this
experiment. The plots illustrate the mean error, the standard
deviation of the error and the maximum error for each distance
and for the rotational and translational parts of the error.
As can be seen, the major trend is a decreasing accuracy
of the kinematic model with increasing distance of the test
pattern. The plot for the mean of the translational part has
its minimum of 2.34 mm at 80 cm - the distance where the
kinematic calibration was calculated. The mean error reaches
its maximum in the distance of 140 cm (6.85 mm mean error).
The rotational error ranges from 0.58 up to 1.62 degrees.

B. Stereo Calibration Accuracy

The accuracy of the stereo calibration was tested in a similar
way. Again the position of the test pattern was determined in
the left camera using a model-based approach. Additionally,
three corresponding corner points of the calibration pattern in
the left and right image were determined and the 3D position
of these points was calculated utilizing the epipolar geometry
based on the calibrated transformation matrix Hstereo. From
these three points, the pose of the test rig in the left camera was
estimated. In that way the accuracy of the stereo triangulation
could be evaluated with respect to the model based approach.

The experiments were performed for the test pattern located
at distances from 60 cm up to 140 cm from the eye system, in
each step 50 random test poses were recorded and evaluated.
Fig. 5 shows the resulting translational and rotational error
between the pose using the model-based approach and the
pose calculated based on stereo triangulation. As can be seen
the errors in the stereo triangulation accuracy show the same
trend as the kinematic error, but are much larger. The increase
of the error results from the fact, that small position errors
(within the kinematic calibration) result in larger errors when
performing stereo triangulation. The best results could again
be achieved for small distances of the test pattern. Within a
test pattern distance of 70 cm the mean translational error was

measured with 8.7 mm and the minimum mean rotational error
was measured with 1.72 degrees for the same distance.

C. Inverse Kinematics Accuracy

In the third series of experiments we tested the kinematic
calibration in saccadic eye movement tasks. Therefore we
calibrated the first three DoF of the head-eye system (namely
eye pan left, eye pan right and eye tilt). For these joints, con-
ventional differential inverse kinematics based on the inverse
Jacobian could be deployed, since the kinematic system is not
redundant (see also [4]). In the experiments in this section we
again evaluated the accuracy at different distances of the test
rig. For each distance, arbitrary camera poses were generated
by moving three head joints (neck pitch, neck roll and neck
yaw) to random positions in the interval of −10 to 10 degrees
for each joint. The pose of the test pattern in the left camera
was again determined using a model-based approach. Using
the calibrated kinematic model, the inverse kinematic problem
was solved and a saccade was performed in order to point
the optical axes of the cameras towards the origin of the test
pattern. In order to evaluate the accuracy, the distance between
the corresponding corner of the test rig and the principal
point of the camera in the image plane were measured, after
performing the movement. Since left and right camera share
a common tilt joint, the error in y direction will never be
zero. The inverse kinematics module outputs the mean eye tilt
actuation for left and right eye to minimize the overall error. In
order to compensate for this effect, we used a modified error
in y direction ym to derive a more realistic result:

ym =
yl + yr

2
(13)

Using the modified ym, the position error for left and right
camera was calculated.

Fig. 6 shows the results of these experiments. The error in
the left camera decreases with increasing distance of the test
pattern. This effect is caused by the fixed range for eye pan
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Fig. 5. Accuracy of the proposed stereo calibration. The 3D pose of a test pattern was determined in the left perspective camera using a model-based
approach. Furthermore, the pose of the pattern was determined using stereo triangulation. The plots show the translational and rotational error between model
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Fig. 6. Accuracy of saccadic eye movements. The 3D pose of a test pattern was determined in the left perspective camera using a model-based approach.
The calibrated model was used for differential inverse kinematics in order to point the optical axes of the cameras towards the origin of the test pattern. The
plots show the distance in pixels from principal point to the target corner of the test pattern in the image planes. Left: left camera. Right: right camera.

(−20 to 20 degrees) and tilt (−15 to 15 degrees) actuations.
The maximum of the mean error for the left camera amounts
to about 2 pixel for a distance of 60 cm. The plot for the right
camera differs slightly from the results of the left camera.
The increased error in the right camera is caused by the
additional matrix Hstereo which has to be considered in the
differential kinematics. In subsequent experiments, where the
test pattern was located in the right camera, similar plots could
be produced with more accurate results for the right camera
and less accurate results for the left camera.

VI. CONCLUSIONS

In this paper we presented a new approach to solve the
kinematic calibration problem for the Karlsruhe Humanoid
Head’s active camera system. The classical AX = XB
formulation of the head-eye calibration problem was combined
with the benefits of a DH-based approach. The suggested
method offers several advantages over common methods:

1) Generality and accuracy: As our method does not
assume joint axes to intersect, it avoids a methodical
error and allows for an improvement in calibration
accuracy. Above that, it can be applied to a wider class
of kinematic chains than most common methods.

2) Robustness and accuracy: In order to solve for the
coordinate transformation from the joint to be calibrated
to the camera coordinate frame, the desired calibration
matrix is expressed as a non-linear least squares target
function. Compared to solutions based on linear least
squares, the non-linear approach presented here is less
sensitive to noisy input data.

3) Error propagation: In contrast to many two-step ap-
proaches in the literature, the suggested method esti-
mates all unknowns for one joint simultaneously.

4) Verifiability: Only one joint is calibrated at a time.
This way the accuracy of an individual joint’s kinematic
calibration can be easily examined.



We presented experiments on the kinematic calibration ac-
curacy, the stereo triangulation accuracy and the accuracy
of inverse kinematics for saccadic eye movements. The ex-
periments on stereo triangulation accuracy showed that at
manipulation distance the pose of the test pattern could be
determined with an error less then 1.5 cm. The experiments
on the accuracy of the inverse kinematics showed that even
at larger distances, the saccadic eye movement could be
performed with a position error of less then 6 pixels in the
image plane.
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