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Abstract— Visual search is a common daily human activity
and a prerequisite to the interaction with objects encountered in
cluttered environments. Humanoid robots that are supposed to
take part in human daily life should possess similar capabilities
in terms of representing, attending to and recalling objects of
interest in order to ensure robust perception in human-centered
environments.

In this paper, we present necessary processes, memories
and representations which allow to identify and store locations
of objects, encountered from different angles of view, in a
visual search task. In particular, we introduce the so-called
Feature Ego-Sphere (FES) as the scene memory for a humanoid
robot. Experiments comprising different visual search tasks
have been carried out on an active humanoid head equipped
with perspective and foveal stereo camera systems. The scene
is analyzed actively using both camera systems in order to
find instances of searched objects in a consistent and persistent
manner.

I. INTRODUCTION

The ability of humans to search for required objects is a
prerequisite to interaction. Almost all actions that humans
perform rely on specific items which support the action, e.g.
as tools. For example, drinking requires a cup, eating a fork,
and writing requires a pencil. While the task of searching for
such objects is natural to humans it is still hard to implement
on a technical system.

In the context of human visual perception, the pop-out
effect is a well known phenomenon which supports the guid-
ance of attention towards a specific object within a cluttered
scene. According to [1] and [2], the pop-out is attributed
to the interplay between dorsal and ventral pathways of the
human visual system and is modelled using a blackboard
architecture, which strongly relies on parallel processing and
distributed representations of objects.

For technical systems, the visual search task has often
been formulated as top-down attention guidance. Different
approaches in the literature modulate the output of a bottom-
up attention system, e.g. using the feature-gate technique [3].
While these approaches follow the line of biologically plau-
sible systems it is hard to achieve good results for arbitrary
objects due to the parallel and distributed nature of the
problem.

In this work, we propose an approach which takes into
account the difference between the ”wetware” used for
processing in human brains and the hardware of technical
systems. Instead of successively filtering the visual stim-
uli starting with low-level cues as in traditional attention
systems [4], our approach starts with a search for object

Fig. 1. The Karlsruhe Humanoid Head is equipped with a 3 DoF active
camera system and offers one perspective and one foveal camera pair.

instances in the scene with coarse features. The resulting
hypotheses are then verified with local, more descriptive
features. This hypotheses and verify approach allows to
decompose the required search space and to reduce the com-
putational complexity of the problem. The target platform for
our work is the Karlsruhe Humanoid Head [5]. As shown in
Fig. 1, the head provides two pairs of active stereo cameras.
One pair with wide angle lenses for perspective views and
one pair using a small angle of view, which allows a more
detailed visual inspection and mimics the fovea of the human
visual system. The proposed approach uses both camera
systems to actively analyze the current scene. Hypotheses of
object locations are extracted in the perspective view. Based
on these hypotheses, eye movements are executed to direct
the gaze of the foveal cameras towards the corresponding
location. Verification is performed using the foveal camera
images. In order to store the object information from the
current scene as collected during the object search process,
a scene memory is required. In the following we propose a
scene memory which assures the persistence and consistence
of already acquired information about the scene. As will
be shown, the scene memory allows for the integration of
multiple hypotheses based on spatial coherence, which makes
the search task more robust.

With the availability of the necessary technical systems, a
large number of capable vision systems for humanoid robots
has been presented in the last years. In the following we
discuss state-of-the-art systems which make use of foveated
vision and address the problem of visual search. In [6], the
authors present a vision system which integrates foveal and
perspective cameras on a humanoid robot. Object detection
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is performed in the perspective image. Once a known object
is detected, the gaze of the foveal camera is directed towards
the object for recognition. The system proposed in [7] makes
use of the perspective cameras to calculate hypothetical
locations in the scene for a given object using its 3D size and
hue cues. The gaze of the foveal camera is directed towards
the hypotheses in order to perform recognition using SIFT
features. The system works in real-time and takes into ac-
count multiple canonical views of objects. In [8] and [9] the
authors propose a system which comprises the acquisition of
object representations and view-based object recognition on a
humanoid robot. The proposed work focusses on interaction.
Recognition and acquisition is performed on objects in the
hand of an assistant. More recent work has been presented in
the context of the Semantic Robot Vision Challenge (SRVC)
[10]. In [11] the authors describe a system which combines
bottom-up attention and SLAM in order to perform robust
recognition of objects.

While most of these systems provide solutions for the task
of visual search using active camera systems with foveal and
peripheral cameras, the underlying problem of figure-ground
segmentation is still not solved for cluttered environments.
Most systems make use of disparity maps in order to
determine salient regions in the visual field ([8], [9], [11],
[7]). However, in cluttered scenes, the segmentation based
on disparity maps is not applicable. In [6] the background
is represented using Gaussian mixture models which tend to
fail for complex backgrounds and in the presence of clutter.

Unlike the systems described above, our approach con-
structs a consistent and persistent scene memory during the
visual search task, which is constantly verified and can be
used for successive visual tasks. Making use of a scene
memory to collect evidence for searched objects allows to
identify instances in a cluttered scene without the need of
segmentation. The provided experimental results comprise
complex visual search tasks and show that object instances
can be identified even in the presence of clutter using our
approach.

II. ACTIVE MULTI-VIEW OBJECT SEARCH

Fig. 2 illustrates the memories and processes involved in
the object search task. The input of the system consists of the
foveal and perspective camera image pairs as provided by the
Karlsruhe Humanoid Head and the ID of an object to search
for. The search process generates hypotheses for locations
that correspond to the provided object ID and updates the
scene memory accordingly. The attention process serializes
the verification process by guiding the gaze of the foveal
camera pair to salient locations in the scene. Each new
gaze initiates a verification process. Hypotheses in the scene
memory are verified using the more detailed images from the
foveal camera pair. The scene memory is updated in order
to obtain consistent and persistent locations of the searched
object in the scene. The information from the scene memory
can then be used for further visual or interaction tasks.

In the following, we describe the different parts of the
system depicted in Fig. 2.
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Fig. 2. Overview of the memories and processes involved in the pro-
posed system. The search process generates hypotheses of object locations.
From these hypotheses, the attention and control processes generate a
gaze sequence for the foveal camera pair which is used for subsequent
verification steps. The object database contains appearance based multi-view
representations of acquired objects. The system iteratively assures consistent
and persistent information in the scene memory.

A. Object Database

The object database contains all object specific informa-
tion that is required during the object search procedure. The
visual search is performed on the basis of multiple views of
objects - no volumetric information is used. This facilitates
the online acquisition of representations in the sensor space
defined by the robotic system.

In the current state of the work, the object views are
generated off-line in the object modelling center [12]. The
object modelling center offers a camera pair mounted on
a robotic arm and a rotating plate. The target positions
for recording object views are calculated by subdividing an
icosahedron in two stages. Due to the limits of the robotic
arm, the zenith covers angles between ±75◦. With this limit,
58 object views are recorded for each object. The collected
views are then stored in an aspect graph representation ([13],
[14]). In our system, the aspect graph is modelled as a
bidirectional spherical graph which contains one node per
stored view. The edges between nodes are generated using
Delaunay triangulation and thus express the neighborship of
views.

The aspect graph serves as basis for the feature extraction
process. For each view, one global and a set of local
descriptors are extracted and associated to the corresponding
node. In the current implementation of the system we make
use of color cooccurrence histograms (CCH) [15] as global
descriptors. CCHs offer a description of the object that is in-
variant to rotation in the viewing plane and robust to scaling.
Furthermore, they combine texture information (in terms of
information about pairs of neighbored pixels) as well as color
information. We currently use histograms which cover the
hue channel of the HSV image. As local descriptors we use
the scale invariant feature transform approach (SIFT)[16].
Each SIFT descriptor is stored together with a reference
vector to the origin of the image.

In order to reduce the size of required memory, features
are clustered into similar groups using the BIRCH [17]
clustering approach for feature quantization. For this work,
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we compared the performance of the BIRCH algorithm with
the Growing Neural Gas (GNG) method which we used in
our earlier work [18] and its incremental version IGNG.
We observed that the BIRCH algorithm produces similar
clustering results as the IGNG with superior efficiency. Both
algorithms support incremental clustering, which is required
to allow the incremental acquisition of object representations.
In contrast to the GNG and IGNG, where the number of
generated clusters depends on the maximum accumulated
error per cluster (see [18]), the BIRCH algorithm produces a
clustering of the feature space which fits into a given amount
of memory.

After feature quantization all cluster centroids are stored
in the feature pool. Furthermore, for each object, a feature
graph is generated which has identical structure as the aspect
graph. The nodes of the feature graph contain references to
the corresponding clusters in the feature pool. The object
database then consists of one feature graph per object and
one common feature pool.

The feature pool itself is implemented as a two-level
hierarchical memory. All features are held on disk, while the
memory only contains a limited amount of features. Features
are cached in memory during instantiation and removed from
memory following the least recently used (LRU) strategy.

B. Scene Memory

A visual scene memory is necessary to provide a consistent
visual model of the observed scene. It has been shown
that human perception accumulates such a scene memory
”across separate glances and over time” [19]. In our work, the
scene memory contains information about matches between
searched objects and the current scene associated with spatial
information. These matches are successively verified by
moving the foveal cameras to salient locations in the scene.
Together with the processes specified in the Sections II-
C, II-D and II-E, the scene memory provides consistent
information about objects and their locations accumulated
over time. The information is constantly verified and is
persistently made available for further tasks.

The scene memory proposed in this work is constructed
as ego-sphere. The application of ego-spheres as sensory
memory is usually called Sensory Ego-Sphere (SES). In [20],
the authors introduce the SES as sphere around the so-called
ego-center, which is typically located in the base coordinate
frame of the robot. The entries in the SES correspond to
sensory stimuli and are stored with 2 1

2D information using
their spherical polar coordinates (φ, θ, r), thus forming an
ego-centric representation of the current scene. The SES has
been used in a number of different applications such as
multi-modal bottom-up attention [21] and image mapping
and visual attention [22].

In contrast to the SES, where usually sensory information
is stored, we introduce the Feature Ego-Sphere (FES) as
scene memory. The FES is implemented as ego-sphere.
However, instead of sensory stimuli as typically stored in the
SES, information about matches between features from the
object database and the current scene are stored as nodes.

Thus, the FES contains the knowledge gathered so far by
comparing stored object representations with the current
scene. Particularly, the FES does not only contain infor-
mation about positive matches, but also retains information
about the falsification of hypotheses.

Despite its function as scene memory, the FES supports
the proposed hypotheses and verify approach in different
ways. First it allows the integration of different hypotheses
on the basis of spatial coherence. Neighbored entries in
the FES which describe the same object can be combined
to a common node and thus increase the certainty of the
corresponding match. Second, the FES can be deployed to
generate the necessary attentional shifts required to verify
the hypotheses (see Section II-E).

The FES contains two different types of nodes, which are
motivated by the hypotheses and verify approach for object
search:

• hypothesis node: The position of the hypothesis and
information about the match between searched features
and object is stored. Hypothesis nodes can contain
pointers to verify nodes. They are made persistent in
the scene memory in order to allow the search module
to detect changes in the scene.

• verify node: Verify nodes result from the verification of
a node (either verify or hypothesis node). They contain
the verified position and information about the match
between verified features and the scene.

The content of the FES is manipulated by two basic
operations:

• addEntry: Adds a hypothesis node to the FES. The node
is only added if there is no similar node already present
in the proximity. If there is a node present that contains
different data, change is detected and the hypothesis
node is adapted.

• verifyEntry: This operation is called once a node of
the FES has been verified. If the verified node is a
hypothesis node, a new verify node is created and linked
to the hypothesis node. If the verified node is a verify
node, its position and match is updated.

Hypothesis nodes are generated by the search process (see
Section II-C) using the perspective view of the cameras.
The gaze is directed towards salient hypotheses and the
verify process invalidates or verifies the corresponding nodes
using the foveal camera views. The verification process
successively generates verify nodes, if not already present,
with corrected positions and creates links to corresponding
hypotheses. Multiple verify nodes are combined to one node
if they represent the same object and similar positions. In the
course of the verification process, verify nodes are moved
towards valid object positions in the scene.

C. Search Process

The search process is responsible for the generation of
possible locations of object instances enriched by the quality
of the match given a specific object. As input, the perspective
image pair from the robot’s camera system and the object ID
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Fig. 3. The spherical winner-take-all (WTA) network as used to direct the gaze of the robot head. The network consists of the saliency layer (SAL),
integration layer (INT) and inhibition-of-return layer (IOR). The input saliency is generated from nodes of the FES that correspond to the attended object.
Leaky integrate-and-fire neurons in the INT layer initiate an attentional shift once a threshold of activation is reached.

to search for are provided. In order to determine hypotheses
about object locations, the search process requests all CCH
clusters as stored in the feature graph of the corresponding
object. The search is accomplished using an integral image
approach. Object positions are accepted on the basis of
the histogram intersection with the database features. 3D
positions are generated using the disparity map calculated
on the perspective image pair.

The resulting hypotheses comprise the locations of hy-
potheses and the result of the histogram intersection as the
quality of the match. Using the addEntry operation of the
FES (see Section II-B) new hypothesis nodes are added to
the scene memory if not already present.

D. Attention Process
The attention process determines the sequence for the

verification of the FES content. Two factors influence the
decision which FES nodes to verify next: the quality of
the corresponding match and the elapsed time since the
last verification. Such problems of selective attention can be
solved using a winner-take-all (WTA) network as introduced
in [4].

In order to provide the necessary input for the WTA
network, the FES content is filtered using the object ID
of the currently attended object. From the content of the
FES, a spherical saliency map is generated. Each leaf node
from the FES, which corresponds to the attended object ID,
generates a stimulus on the saliency sphere represented as
a 2D Gaussian with an amplitude proportional to the stored
match quality. Multiple stimuli are combined using a MAX
operator.

The saliency sphere is then used as input for a spherical
implementation of the WTA network. Fig. 3 shows the three
layers of the network. The saliency sphere is modulated with
the feedback from the inhibition of return (IOR) layer in the
saliency (SAL) layer. The resulting activations are integrated
using leaky integrate-and-fire neurons in the integration

(INT) layer. Once the activation of a node in the INT layer
exceeds a threshold, the neuron fires and generates activation
in the IOR layer with 2D Gaussian shape. The inverse ouput
of the IOR layer is used as feedback to the SAL and INT
layers.

Each time a neuron in the INT layer fires, a new saccadic
eye movement is initiated in order to direct the gaze of the
foveal cameras towards the corresponding FES entries. For
this purpose, all FES nodes which have similar positions on
the sphere are determined and the gaze is directed towards
the closest node.

E. Verify Process
The verify process is responsible for the constant verifica-

tion of the FES content. Each time the gaze of the robot is
adapted by the attention process, a new verification cycle is
initiated using the foveal camera images. The verification
process requests all nodes from the FES that are visible
within the current field of view. Using the match and object
IDs stored with the nodes, the SIFT features for all associated
object views are determined using the corresponding feature
graph. The object’s presence is verified by filtering the SIFT
matches using a 2D Hough space and voting for the center of
the object (see [23]). The corresponding match is thresholded
and used to modulate the quality previously associated with
the node.

In order to refine the estimated location of the object
encoded in the node, the distance in the image planes
between the object’s position and the principal point of the
foveal cameras is determined. Since no stereo calibration
is available for the foveal cameras, the target position for
the inverse kinematics of the cameras (see Section II-F) is
updated in order to move the optical axes of the foveal
cameras closer to the location of the verified instance. Note
that using this approach the nodes adapt to positions which
allow to bring the object instances into the center of the
foveal cameras.
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(a) Example scene setup used for the object search experiments
viewed from the left perspective camera. Two objects were presented
to the system.

(b) Resulting saliency sphere and
foveal view for the soup can search
task.

(c) Resulting saliency sphere and
foveal view for the salt box search
task.

Fig. 4. Results of the object search experiments for two objects.

For each processed node the operation verifyEntry of the
FES is called which updates the content of a verify node or
generates a new one.

F. Head Control Module

The head control module is responsible for the generation
of target values for the head-eye system which correspond
to the gazes generated by the attention module. There are
essentially two possible strategies to execute the required
movements: closed-loop control and open-loop control. In
closed-loop control, usually visual feedback is used in order
to derive the position error of the eyes iteratively. In contrast
open-loop control does not depend on visual feedback but
uses the kinematic model of the system to determine the
desired posture. Since the target posture in the context of
our work is defined by the spike of a single neuron in the
WTA network, the necessary visual feedback for closed-loop
control cannot be provided.

In order to control the head using the open-loop strategy,
the kinematic model of the head-eye system has to be
determined. Therefore a kinematic calibration process is
performed. We use the approach introduced in [24], which
yields accurate results since it avoids methodical errors
which are usually introduced with the assumption of two
intersecting rotation axes.

The inverse kinematics problem is solved on the basis of
the calibrated kinematic model. Since only eye movements
are used in the system, the problem can be formulated as
non-redundant mapping from 3D Cartesian space to 3D joint
angle space (for more details see [5]). We use the inverse
Jacobian approach to solve for the joint angles of the camera
system. Furthermore, the stereo calibration of the perspective
camera system is made available in order to provide the
disparity map required for the generation of 3D positions
in the search module.

III. EXPERIMENTAL RESULTS

A. Setup

For the experiments presented in this section, five objects
were stored in the object database. The object view acqui-
sition generated 58 views per object covering equidistant
angles in the range of θ = [−75◦; 75◦] and φ = [0◦; 360◦[.
The resulting 290 CCH descriptors used in the search module
were quantized to 75 cluster centers.

The Karlsruhe Humanoid Head was equipped with a pair
of 4 mm lenses for the perspective cameras and 12 mm lenses
for the foveal cameras. For the experiments the objects were
positioned at about 1 m distance to the head.

B. Experiment I: Object Search Task

In the first experiments, a simple object search task was
performed. Two objects from the acquired set were presented
in front of a non-uniform background. An example input
scene is depicted in Fig. 4(a).

In separate search tasks each of the two objects was
enquired. Fig. 4(b) shows the results of the search for the
soup can. The upper image illustrates the saliency sphere
after 22 verifications. All incorrect hypotheses have been
eliminated and the correct hypotheses have been fused by the
FES to form a combined position estimate on the saliency
sphere. The lower picture in Fig. 4(b) shows the foveal image
of the left camera. Similar results could be achieved for the
salt box (see Fig. 4(c)). The search task for the salt box could
be completed within nine verification steps.

The number of required verification steps depends on
the number of hypotheses generated by the search process.
Considering the input scene in Fig. 4(a), the salt box has
an outstanding color signature and could be brought into
focus on the first saccade. The remaining eight verifications
adapted the positions of the verify nodes to a single estimate
in the FES. In contrast, the CCH of the soup can was found
in multiple incorrect scene parts as e.g. the robot arm and
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(a) Scene setup used for the complex search task. Two instances of
one object are presented to the system in a cluttered scene.

(b) Resulting saliency sphere and foveal views of the left foveal camera.
In the final state, the system focusses alternately on the position of both
object instances.

Fig. 5. Results of the object search task for two instances in a complex scene.

the teach box. These spurious hypotheses could be invali-
dated by performing additional saccadic eye movements and
verification steps.

The same procedure was performed for all objects in the
object database. Similar results could be achieved with a
mean number of required verifications steps of 17 in order
to retrieve a saliency sphere similar to Fig. 4(b) and Fig. 4(c).

C. Experiment II: Complex Search Task

The goal of the second experiment was to evaluate the per-
formance of the propose approach in cluttered environments.
The scene shown in Fig. 5(a), which contains a large amount
of distractor objects was presented to the system. The task
of this experiment was to find both instances of the cereal
box among the distractor objects.

The system performed a saccade containing 28 verification
steps in order to retrieve the results depicted in Fig. 5(b). Two
locations of high intensity are visible on the saliency sphere,
which correspond to the locations of both object instances.
After the 28 iterations, the gaze alternately focussed the two
instances of the cereal box. Despite the two peaks on the
saliency sphere, other local intensity maxima are visible. The
local maxima result from unverified hypothesis which lie in
the proximity of highly activated areas. If the activation of
such hypotheses is below a threshold they can be dominated
by strong stimuli nearby. The local maxima can be removed
by reducing the IOR size which results in a prolonged
verification procedure.

The scene memory content generated during the search
task is depicted in Fig. 6. From the initially large amount of
hypothesis nodes only a small amount could be verified and
has been associated to verify nodes. All other hypotheses
nodes are either invalidated or dominated by a stronger
stimulus in the proximity. The system produced one unique
verify node per instance of the object in the scene.

Instance B

Instance A

Fig. 6. Content of the FES after 28 eye movements and verifications. Both
instances of the searched object have one unique verify node (marked by the
black box), which is supported by multiple hypotheses nodes (associations
marked with dotted line). For each hypotheses node the connection to the
ego-center is illustrated.

D. Discussion

For the experiments we abstain from giving recognition
rates of the system since the object search performance
directly depends on the object to find in the search task.
Because the approach relies on CCH and SIFT features, it
is limited to objects and object views which exhibit prop-
erties that allow a robust representation with the considered
descriptors.

The CCH implementation using the hue channel cannot
handle object views that contain black and white in ma-
jor parts. This results from the fact that black and white
do not have a well-defined representation in HSV color
space. Furthermore, lighting is an issue when using color
descriptors. The experiments were carried out using natural
lighting conditions with variations during the day. Reducing
the threshold for CCH matching allowed to account for
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small changes in ambient lighting, but increased the number
of invalid hypotheses produced during the search process.
Since the verification process is not that critical concerning
lighting, good results could still be achieved. To provide good
verification performance using SIFT features, enough texture
has to be present in the object view in order to provide
the necessary number of features. While logos and pictures
printed on the objects provide good features, small written
text is usually not covered by the SIFT approach. In our
database the short side views of the objects usually contained
text and large white areas and thus could not be consistently
identified. For other views, e.g. as presented in the previous
sections, the results could be reproduced consistently.

The proposed system currently runs on a single core
3.0 GHz linux PC. Each verification step took about 20 sec-
onds. We did not use an optimized implementation of the
feature matching process. The approach is intended and
already prepared to run on our vision cluster which comprises
6 IBM eServer connected via Ethernet. We expect that by
means of optimization and cluster implementation we will
reach a verification run-time of less then 1 second.

IV. CONCLUSIONS

In this work we presented an approach which provides
persistent and consistent information about object locations
resulting from an object search task. The FES datastructure
and associated processes were introduced as scene memory.
The necessary processes and modules required to perform
a visual object search task were presented and discussed.
Experiments comprising the search for one object at a time
and the search for multiple instances of an object in cluttered
scenes were carried out and discussed.

The results show that even for complex tasks the proposed
hypotheses and verify approach is able to identify the object
locations by actively analyzing the scene.
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