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Abstract— In order to allow humanoid robots to operate in
unstructured environments, behaviors have to be implemented
that support exploration of the evironment. In active visual
perception, saccadic eye movement is such a behavior that
supports the exploration of salient locations within the current
scene in a sequential manner.

The proposed work deals with the integration of visual features
extracted at different gazes during saccades executed on an
active humanoid head. Using probabilistic methods to account
for uncertainties during execution and perception, visual stimuli
are integrated in an ego-centric representation. The resulting map
stores the regarded stimuli in a consistent fashion. The approach
is evaluated using three common types of feature extraction
methods.

I. INTRODUCTION

The ability to investigate and explore the environment is
a crucial task for humanoid robots to become part of our
daily life. The integration of sophisticated sensor systems in
humanoid platforms allows to study and establish methods that
exploit these sensor systems in order to provide a more stable
perception.

The work presented here focuses on aspects of visual
perception using an active camera system, namely the Karl-
sruhe Humanoid Head [1]. Most current humanoid robots are
equipped with simplified eye-head systems having a small
number of degrees of freedom (DoF). The heads of ASIMO
[2], HRP-3 [3] and HOAP-2 [4] have two DoF and fixed
eyes. In contrast, the Karlsruhe Humanoids Head offers 7 DoF
including separately actuated eyes.

Generally, there are two different strategies for controlling
the gaze of such an active system: smooth pursuit and saccadic
eye movement. In smooth pursuit, a collection of previously
perceived stimuli is fixated and centered in the cameras using
closed-loop control [5]. While smooth pursuit is the strategy
of choice once the agent focuses on an object or interacts
with a person, exploratory behavior requires the generation of
rapid gaze shifts to only roughly visually perceived stimuli or
stimuli from different modalities. These so-called saccadic eye
movements allow to implement mechanisms such as attention
on humanoid systems. While performing a saccades, the scene
is perceived from different viewpoints, each providing distinct
visual information. The perception of the scene from different
gaze directions augments the visual field of the system.

In contrast to smooth pursuit strategies, saccadic eye move-
ments require a model of the kinematic structure in order to
map locations of salient stimuli to the corresponding motor
commands. The exact kinematic model of the Karlsruhe Hu-
manoid Head is not known completely from CAD, since the

position of the optical centers of the camera system cannot
be determined a-priori. In order to derive an approximated
model, a visually supported kinematic calibration procedure is
performed off-line. Using the calibrated model, saccadic eye
movements could be executed with satisfactory accuracy [6].
In order to derive a consistent scene representation, the rela-
tion between different gaze directions has to be determined.
While the accuracy of the approximated kinematic model is
sufficient to implement saccadic eye movements on the head,
the perception itself is much more prone to inaccuracies in the
underlying transformation. Since both eyes of the head can
move independently around their pan axis, small inaccuracies
lead to large errors when using stereo vision methods.

In this work we present an approach which allows to
integrate visual stimuli from different gazes performed on an
active vision system with independently actuated eyes. The
proposed method takes into account uncertainties in both exe-
cution of motor commands and extraction of stimuli in order to
infer a consistent model of the environment. The uncertainties
are formulated in a probabilistic fashion. Bayesian methods
are proposed in order to infer a map of 3D visual landmarks
from the observed stimuli. The proposed method supports on-
line mapping; visual information from each gaze is integrated
into the ego-centric model of the scene. As will be shown
by the experiments, a consistent map could be generated for
different types of visual features.

This paper is organized as follows: The next paragraph gives
an overview of related work in the field of visual perception for
humanoid robots. In Section II, the components of our method
are described in detail, before we present experimental results
in Section III.

A. Related Work

The problem of spatial mapping of visual 3D landmarks
using cameras is a well-studied research area. Depending on
both the domain and the target system, various approaches
have been proposed.

In the structure-from-motion (SFM) field, the goal is to
determine feature locations and extrinsic camera parameters
from multiple observations of a scene at different positions of
the camera. Usually only one camera is accounted for. Most
commonly, bundle adjustment is performed using minimzation
methods ([7], [8]). In [9] SFM is applied in an attentional
framework on a mobile robot platform. The approaches pro-
posed in the SFM field are not suitable for our problem, since
translational movements are necessary to derive equations
that allow for a robust solution. Furthermore, for solving the



minimization problem, a set of images has to be regarded at
once. Hence, bundle adjustment is not the choice for on-line
applications.

The field of auto-calibration or self-calibration is closely
related to reconstruction from stereo images. In self-calibration
one seeks to recover the fundamental matrix from observations
of features in both image planes. The problem of calibrating
an active stereo camera system using observations of features
is still difficult. Most approaches use simplifying assumptions
in the camera model ([10], [11]) or ego-motion [12] in order
to derive the fundamental matrix. In our approach we do not
seek to guess the exact fundamental matrix from observations.
A kinematic calibration is performed offline, which provides
an approximation of the fundamental matrix for different
actuations of the eye system. The inaccuracy of this calibration
is taken into account in terms of noise in the motion model of
our approach in order to derive a consistent mapping of 3D
features.

The field of visual self-localization and mapping (visual
SLAM) is closely related to the presented work. Visual SLAM
deals with the application of visual information for the SLAM
problem [13]. A mature approach for visual SLAM called
MonoSLAM has been presented in [14]. MonoSLAM allows
to estimate both the motion of a single camera and a map
of landmarks from multiple observations in a probabilistic
framework. Several applications on robots performing ego-
motion have been presented. Since translational motion of
the camera is a key cue for retrieving an estimate of the
map, MonoSLAM cannot be applied to our problem. Because
saccadic eye movements only involve very small translational
variations of the camera poses, we solve this problem by
introducing an approximated model of the motion of the
camera together with appropriate uncertainties. The proposed
system does not seek to solve the problem of self localization
itself but rather uses the approximated model of its state in
order to infer the map.

II. PROPOSED APPROACH

The proposed approach aims at the accumulation of visual
information extracted from the perceived world during sac-
cadic eye movements. The extraction takes place after each
gaze shift; during the execution of a saccadic movement the
perception is disabled. On a technical system, the interruption
of perception helps to cope with motion blur and image
synchronization.

Fig. 1 shows a Bayesian network that models the observed
and hidden variables in the system. Given this formalization,
the goal of the system is to infer the map m from the
measurement z captured after each saccadic eye movement.
Since the world is not static, we want be able to cope with
appearing and disappearing stimuli resulting from interference
of other agents. The observed state u is given by the encoder
readings from the three eye joints: panning left and right
as well as common tilt. The hidden variable x captures the
state of the system comprising uncertainties resulting from the
positioning of the eye joints.

ut-1 ut ut+1

xt-1 xt xt+1

zt-1 zt zt+1

m

Fig. 1. Graphical model of the proposed system. From the current control
u, the system state x is modeled by accounting for the dominant noises in
execution and calibration. Each observation of features in the system state
x results in measurements z. The goal is to infer map m while capturing
measurements during multiple saccadic eye movements.

The head eye system has been visually calibrated using the
approach presented in [6]. The resulting approximated kine-
matic model is made available for the proposed approach. As
discussed below, some aspects of the calibration are modeled
in both the observed state u and the system state x in order
to cope with the remaining uncertainties.

In the following paragraphs we present the motion model,
which captures the dominant sources of noise introduced when
executing gaze shifts as well as the measurement model, which
covers the uncertainties during perception in a probabilistic
manner. The organization of the map m is discussed and the
deployed probabilistic inference approach is presented.

A. Motion Model

In order to infer a consistent map m, all relevant uncer-
tainties which result from the motion of the eyes have to be
formulated in the motion model. In the following, we describe
the sources of noise which we identified to be most dominant
on our system and derive appropriate representations of the
observed state ut and the hidden state xt. The motion model
is then formulated as the conditional probability p(xt|ut) that
the system is in state xt given the observed state ut.

For our system we identified the following sources of noise
to be most dominant:

• Positioning noise
The positioning of the head is very accurate (see [1]).
However, depending on the settings of the low-level con-
trollers, small errors in positioning remain. Furthermore a
small error in the conversion to joint angles from encoder
values has been observed. Both errors are assumed as
additive noise with Gaussian uncertainty. While the posi-
tioning noise is assumed to be constant over the complete
space of joint angles, the conversion noise is modeled as a
normal distribution with increasing variance proportional
to the actuation of the joint. Considering joint angle



readings ~θ = (θet, θepl, θepr)
T for the eye tilt and both

eye pan joints, the uncertainty resulting from inaccurate
positioning Σp and inaccurate conversion from encoder
values to joint angles Σc lead to the positioning errors

epos,p ∼ N (0,Σp) (1)

epos,c ∼ N (0,Σc
~θ), (2)

where Σp and Σe are diagonal matrices modeling the
variance for each joint independently.

• Calibration noise
As aforementioned, an approximated kinematic model
of the eye system has been calibrated offline. While
the orientation of relevant coordinate systems can be
determined very accurately during offline calibration, the
exact position of the rotation axes is hard to derive from
the visual calibration procedure. In order to cope with
this inaccuracy, we model the calibration error ecal that
is induced to the position of rotation axes for different
calibrations using additive Gaussian noise. The position
of each rotation axis is described with its translation
~r relative to the last joint. The calibrated translation
parameters are subsumed in ~d = (~ret, ~repl, ~repr)

T . The
uncertainty about the position of the axes is modeled
using the normal distribution

ecal ∼ N (0,Σcal). (3)

Given the above considerations, the observed state ut com-
prises the currently measured actuation of the joints ~θt and
the calibrated joint axes translations ~d. Using the formulated
errors, the conditional probability of being in the hidden state
xt given an observed state ut = (~θt, ~d)T can be formulated
by

p(xt|ut) = ut +
(

epos,p + epos,c

ecal

)
, (4)

where all errors are assumed to be independent.

B. Map Representation

In the presented work we only consider movements of the
3 DoF of the eye system. Therefore, an ego-centric reference
coordinate frame is established which corresponds to the initial
position of the left camera. Our approach aims to derive a
map of the environment which contains visual features in this
reference frame. The resulting map expresses uncertainties
about the position and the existence of features within the
scene.

The deployment of a scene representation which consists
of features motivates a landmark based representation of the
map. Each landmark in the system consists of its 3D position
~ln = (x, y, z) accompanied with the position uncertainty Σl,n.
Together with the signature sn, which describes the appearance
within a defined region, and the log probability in for the
existence of the landmark, each landmark Ln can be described
by

Ln = (~ln,Σl,n, sn, in). (5)

The map m contains an entry for each landmark

m = {L1, · · · , LN}, (6)

where N is the number of landmarks in the map.
Reviewing the graphical model in Fig. 1 the uncertainty

of landmarks is independent. The uncertainty of the feature
position is represented using a normal distribution. The prob-
ability of a landmark n being at a position within the map is
expressed using the equation

p(mn) = N (~ln,Σl,n). (7)

C. Measurement Model

In the following section the measurement model for our
approach is derived. Both cameras of the active vision system
are modeled as a single sensor that measures 3D positions
of features. As will be shown, this allows intuitive inference
of 3D maps. The measurement model is defined by the
conditional probability p(zt|xt,m) that a measurement zt is
observed given the system state xt and the map m. Let each
measurement zt be composed of K measured features zk,t. We
derive the above conditional probability for the measurement
of a single feature zk,t. First a model for the uncertainty of
the 3D position resulting from inaccuracies in the 2D position
of features in the image plane is derived. Then the resulting
3D localization uncertainty is expressed with respect to the
system state xt.

Features are extracted in the camera images, whereas each
feature detector identifies positions ~ul, ~ur in the left and right
image plane. It is assumed that for each applied feature
extraction method the uncertainty of determining its position
in the image plane I can be approximated with the normal
distribution

p(I) = N
(

~u,

[
σ2

x 0
0 σ2

y

])
. (8)

The 3D position is determined using epipolar geometry. For
each feature in the left image, the epipolar line in the right
image is calculated and the best match in proximity of the
epipolar line is selected. The resulting uncertainty of the 3D
position using epipolar geometry can not be derived in a closed
form from a pair of uncertain 2D positions in the left and right
camera images. Fig. 2(a) shows the true distribution of the
3D uncertainty resulting from reconstruction using uncertain
2D features according to (8). While the result is clearly not
normal distributed, the Gaussian approximation still yields
good results in practice ([15], [16]).

The geometry of stereo triangulation is depicted in Fig.
2(b). The dotted lines denote the points corresponding to
the standard deviation σx of the feature localization. The
distribution is the product of the uncertainties of the left
and the right camera for each point in the epipolar plane.
In [17] and [16], a Gaussian approximation of the resulting
distribution is derived for cameras with parallel optical axis.
In the following this model is adapted for actuated cameras.

The error is decomposed in two components as proposed
in [18]. The pointing error δp is derived from the uncertainty
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(a) Reconstruction uncertainty in the epipolar plane for cameras with baseline
of 9cm and actuation of 25◦. The plot shows the uncertainty of a point at
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(b) Approximated 3D reconstruction error. The uncertainty el-
lipse is derived using the pointing error δp and the matching
error δm.

Fig. 2. True distribution and proposed model of the 3D reconstruction error.

of localization in the left camera image and is assumed to be
orthogonal to the projection axis POL. The projection of the
axis POL into the right camera (epipolar line) is the basis for
the identification of matching correspondences. Consequently,
the matching error δm is measured along the projection axis.
Both errors can be derived using the following equations:

δp =
dLσ

f

δm =
sin(drβ)

sin(180− ϕ− β)

The extension to the third dimension is straight forward using
the standard deviation σy in y direction.

Using the above approximation the uncertainty of a 3D
measurement is calculated in the following way:

Σ3D = HPOL

 δ2
p,x 0 0
0 δ2

p,y 0
0 0 δ2

m

 HT
POL

, (9)

where HPOL
describes the rotation of the ellipsoid around the

point P according to the projection axis in the left image and
δp,x and δp,y describe the pointing error in x and y direction.

The proposed approximation of the uncertainty reflects the
important property of the true distribution, that uncertainty
in depth increases with decreasing angles ϕ between the
projection axes of the left and right camera [8]. Note that we
assume the camera planes to be orthogonal to the projection
axes, which results in an optimistic approximation of the error.

In order to incorporate the system state xt in our mea-
surement model we define the functions Fk,t(zk,t, xt) and
Gk,t(Σ3D,k,t, xt) which update the position zk,t and the un-
certainty Σ3D,k,t of the k-th measurement using the calibrated
model of the eye system and the current system state xt.

Altogether, the measurement model for a single feature zk,t

with respect to the n-th landmark and the system state xt is

given by

p(zk,t|xt,mn) = det(2πGk,t)−
1
2

exp

(
−1

2
(Fk,t −~ln)T G−1

k,t(Fk,t −~ln)
)

.

D. Bayesian Inference

In order to infer the hidden variables mt and xt of our
system, we use a Rao-Blackwellized particle filter approach
[19]. The method we choose is a slightly adapted version
of FASTSlam [20]. In the following, a short overview of the
aspects specific to our approach are given. For further details,
the reader is referred to the cited work.

The update of the system state is performed by sampling
the system state xt according to the motion model (4). Note
that for our approach we do not consider the state of the
system at time t− 1. Furthermore, each sampled particle Y w

t

contains a map representation mw. The maps are sampled from
the last particle filter iteration according to their probability
p(Y w

t ), which will be introduced later (13). The w-th particle
is defined by

Y w
t = (~xw

t , Nw, Lw
1 , · · · , Lw

N ) . (10)

For each particle in the set of W particles, the map is updated
using the current measurement zt. As the correspondence
between measured features and landmarks is not known in
our approach, we solve the correspondence problem using
a maximum likelihood (ML) estimator [21]. For each ML
correspondence between a landmark Lw

n,t and an observation
zk,t, if the ML probability pn is above pnew, the belief is
updated using a Kalman filter approach.

Let the belief of a the map m be defined by

bel(m) = p(m|z1...t, u1...t). (11)
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Fig. 3. Results of the mapping of chessboard corner points after 80 saccades.

Each Kalman filter updates the belief associated with the
landmark n using the Bayes update rule

bel(mw
n ) = ηp(zk,t|xw

t ,mw
n , )bel(mw

n ). (12)

For measurements where no correspondence can be estab-
lished, a new landmark Lw

N+1 is generated using both mea-
surement uncertainty and position corresponding to the system
state stored in the particle xw

t . The landmark probability is
initialized to pN+1 = pnew.

Furthermore, for observed landmarks Lw
n,t the log probabil-

ity of their existence iwn is increased by a constant amount.
For landmarks in the map that are visible but do not have a
corresponding measurement, the log probability is decreased
accordingly. Landmarks with iwn ≤ 0 are removed from the
map. In order to allow fast removal of features that disappeared
from the scene, the log probability is restricted to lie below
imax.

For each particle, the associated probability is calculated
with the following equation

p(Y w
r ) ∝ (pmiss)u

Nnew∏
n=1

pnq(sn), (13)

where pmiss describes the probability of not observing a
landmark, u amounts to the number of visible but unobserved
landmarks, Nnew is the updated number of landmarks and
q(sn) derives a probability based on a similarity metric for
the stored signature sn and the observed feature.

III. EXPERIMENTS

All experiments were carried out on the Karlsruhe Hu-
manoid Head, equipped with 640 × 480 resolution FireWire
cameras and lenses of focal length f = 4mm. The saccadic
eye movements were performed using direct kinematics with
random actuations for each eye joint. For eye pan actuations
we selected values from the interval θepl, θepr ∈ [−10◦; 10◦],
eye tilt actuations were generated in the interval θet ∈
[−10◦; 10◦]. In all experiments we used the same motion
model. The positioning noise Σp was determined using the
results from [6]. The standard deviation of all joints was set to
the conservative value σp = 0.15◦. The joint angle conversion

error was determined empirically with σe = 0.1◦. The calibra-
tion error could be derived by performing multiple calibrations
and analyzing the Cartesian position of the rotation axis.
The observed standard deviation was about σcal = 1.0mm.
Furthermore, the maximum log probability for the existence
of a landmark was set to imax = 5 in order to react fast to
changes in the scene. For all experiments we used W = 200
particles.

In the following, three experiments are presented using
different features to generate landmarks.

A. Mapping with ground truth

In order to test the convergence of the map towards the
observed scene, a chessboard rig with known size was de-
ployed for the first experiment. As ground truth, the distance
of chessboard corners was drawn on. For chessboard patterns,
out-of-the-shelf corner point detectors can be applied with
subpixel accuracy (see [22]). For this experiment we did not
use signatures to describe the features. This corresponds to a
similarity measure of q(sn) = 1 for all landmarks in (13).
Using the values from the cited work we chose a standard
deviation σx = σy = 0.5 pixel for the uncertainty of corner
point localization. 80 random saccadic eye movements were
performed and the covariance matrix of all landmarks together
with the distance of neighbored corner points was recorded.

The 48 landmarks could be tracked through all 80 saccadic
eye movements. Figure 3(a) illustrates how the mean volume
of the uncertainty ellipsoid |det(Σ)| converges over the itera-
tions of the particle filter. After 80 saccadic movements, the
volume of the ellipsoid amounts to about 0.021mm3. In Figure
3(b), the mean distance of neighbored corner points over
the 80 saccadic eye movements is illustrated. The manually
measured distance of corner points on the chessboard amounts
to 36.3mm. The mean distance as calculated from the particle
with the highest probability converged to about 36.0mm. The
difference between the mean distance and the ground truth
of about 0.8% results from unmodeled phenomena such as
inaccurate intrinsic camera parameters. Figure 3(c) illustrates
the map after 80 iterations together with the uncertainties in
landmark localization.
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Top View

(a) Best map of SIFT features ofter 20 saccadic eye movements in the ego-centric
coordinate frame. The resulting landmarks lie along the visible plane of the object.

(b) Reprojection of the best map onto the images of left and right
camera.

Fig. 4. Results for mapping using SIFT features.

B. Mapping of Texture Features

In the second experiment we focused on a more realistic
mapping task. As stimuli, a slight modification of the widely
used SIFT features has been used [23]. The feature points were
extracted using the Harris corner detector; as descriptor the
SIFT approach was chosen. For the experiments we applied a
standard deviation of σx = σy = 1.5 pixel for the uncertainty
of 2D localization. For the similarity of SIFT descriptors q(sn)
we use the Euclidean cross correlation.

Since no ground truth is available concerning the absolute
or relative position of these features, examples of resulting
mappings are provided in Figure 4(a). The figure illustrates
how all three objects produced a set of 3D landmarks which
have only a small deviation from the common plane after
20 saccadic eye movements. Four outliers have been mapped
which result from erroneous correspondences between the left
and right images. Figure 4(b) shows the projection of the
resulting map to the images of the left and right camera.

C. Mapping of Coarse Features

The third experiment deals with a slightly different scenario.
Visual stimuli were generated at locations which correspond
to an instance of a searched object. As features, receptive
field cooccurrence histograms (RFCH) were used, which are
a very coarse descriptor of the object. In the experiment,
RFCHs only cover the hue channel of the image, the similarity
measure q(sn) was calculated using histogram intersection.
Since RFCHs were extracted using a window technique, the
uncertainty of perception covers areas equal to the window size
in the image plane. For the experiment the minimum window
size was set to 32 × 48 pixel. The RFCH search produced

visual stimuli which are a multiple of the minimum window
size. The deviations of the 2D localization error σx and σy

were set according to the window size.
Figure 5(a) shows the resulting map after 20 saccadic eye

movements in a search task for the Frosties cereal box. Due to
the coarse feature extraction method, uncertainties were much
higher than in the previous two experiments. As can be seen in
the back projection of the map (see Figure 5(b)), both instances
of the object have two associated features which correspond
to regions with different RCFH signatures. Due to the coarse
description of objects using RFCHs, invalid hypotheses for
object positions were integrated in the map. Such invalid
hypotheses can be eliminated by further verification using
foveated vision (see [24]).

IV. CONCLUSION

In this work we presented an approach for the integration
of visual 3D features acquired while performing saccadic eye
movements on an active camera system. We showed that a
consistent ego-centric map of the environment with respect
to the deployed features could be built and tracked using our
approach.

While this work focuses on a static head performing eye
movements with the goal to explore the surrounding environ-
ment, the proposed methods can also be applied on moving
platforms by extending the proposed motion model. However,
in contrast to related approaches, translational movement is
not a prerequisite for the generation of 3D maps. This allows
the exploration of salient regions within the augmented visual
field of view resulting from eye movements.



Backside View

Top View

(a) Best map of RFCH features ofter 20 saccadic eye movements in the ego-centric
coordinate frame.

(b) Reprojection of the best map onto the images of left and right
camera.

Fig. 5. Results for mapping using RFCH features.
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