Gaze Selection during Manipulation Tasks

Kai Welke, David Schiebener, Tamim Asfour and Riidiger Dillmann
Karlsruhe Institute of Technology (KIT)
Institute for Anthropomatics (IFA)

{welke, schiebener, asfour, dillmann}@kit .edu

Abstract— A major strength of humanoid robotics platforms
consists in their potential to perform a wide range of ma-
nipulation tasks in human-centered environments thanks to
their anthropomorphic design. Further, they offer active head-
eye systems which allow to extend the observable workspace
by employing active gaze control. In this work, we address
the question where to look during manipulation tasks while
exploiting these two key capabilities of humanoid robots.

We present a solution to the gaze selection problem, which
takes into account constraints derived from manipulation tasks.
Thereby, three different subproblems are addressed: the repre-
sentation of the acquired visual input, the calculation of saliency
based on this representation, and the selection of the most
suitable gaze direction. As representation of the visual input,
a probabilistic environmental model is discussed, which allows
to take into account the dynamic nature of manipulation tasks.
At the core of the gaze selection mechanism, a novel saliency
measure is proposed that includes accuracy requirements from
the manipulation task in the saliency calculation. Finally, an
iterative procedure based on spherical graphs is developed in
order to decide for the best gaze direction. The feasibility of the
approach is experimentally evaluated in the context of bimanual
manipulation tasks on the humanoid robot ARMAR-IIIL.

I. INTRODUCTION

The anthropomorphic design of humanoid robots makes
these platforms most suitable for manipulation tasks in
human-centered environments and facilitates human-robot
interaction. The integration of active head-eye systems in
such platforms is a direct consequence of the anthropomor-
phic design. While the application of head and eye move-
ments to fixate, to saccade, or to perform smooth pursuit
plays an important role in interaction, there is also a technical
benefit in using active systems. In contrast to passive camera
systems where an increase in the field-of-view leads to a
loss in the resolution of details, the application of active
systems allows to increase the observable area while keeping
the details. During manipulation this behavior is desirable,
especially if the task involves multiple objects which are
spatially distributed. Fig. 1 illustrates such a setup, where
the goal of a bimanual manipulation task is pouring of juice
into a glass. By fixating the objects sequentially using active
gaze control, almost the full camera resolution is available
to perform reliable object recognition and pose estimation.

The classical approach to solving complex manipulation
tasks involves the sense-plan-act scheme. Thereby, entities of
the world are visually captured in an internal representation
which is then used as basis for action sequencing and motion
planning followed by the execution of the resulting trajec-
tories. On humanoid robots such an approach bears several

Fig. 1. ARMAR-IIIa [1] performing bimanual visual servoing in order to
pour juice into a cup. During this task, both target objects as well as the
hands of the robot need to be observed by the visual system. Due to the
large workspace, the selection of appropriate gaze directions is required in
order to cover all task relevant objects and thus allow successful execution
of the task.

problems that render its applicability in real world scenarios
difficult. First, the complexity of humanoid platforms leads
to divergence between the kinematic and dynamic model and
the real execution. Thus, the planned trajectories are usually
not executed with the required accuracy. Second, the internal
representation of the scene is also affected by inaccuracies.
These stem on the one hand from noisy measurements of
the perception and on the other hand from unpredictable
behavior in unconstrained environments. Consequently, in
order to achieve robust execution of manipulation tasks,
a continuous adaptation of the internal representations is
favorable over a sense-plan-act approach.

In order to take into account the inaccuracies of perception
and execution, a common approach consists in formulating
the processes involved in the overall task in a probabilistic
fashion [2]. The derivation of an internal representation then
becomes a probabilistic inference problem where appropriate
models for uncertainty in the perception and execution pro-
cesses need to be provided. In our approach, the environment
is represented using a spatial environmental model of all
entities involved in the manipulation task. Each entity corre-
sponds to an object in the real world, i.e. cups, juice boxes,
or hands of the robot, and is accompanied with uncertainties



about its current state. Appropriate observation models for
the visual perception are introduced and applied in a data
fusion scheme thus reducing the amount of uncertainty over
time. Further, the motion of all objects is predicted in order
to account for the dynamic nature of manipulation tasks. This
is essential since e.g. the arms of the robot move during most
manipulation tasks.

During a manipulation task, the different world entities
compete for being fixated by the active camera system. Each
fixation of an entity allows a more accurate representation
of its state within the environmental model by fusing the
new observation with the past sensor data. Depending on
the manipulation task the requirements on the accuracy of
the environmental model might differ significantly. While
e.g. transportation tasks usually do not require a precise
estimation of the object’s position, other tasks such as
grasping will fail if the estimated poses of the object and
the robot hand are not accurate enough. Consequently, we
propose to include these accuracy requirements in the gaze
selection mechanism by fixating objects accordingly. In order
to include this task specific guidance in the gaze selection
strategy, we introduce the rask acuity in the calculation of
saliencies. By implementing a gaze selection mechanism on
top of the task acuity, the active perceptual process can
be configured in order to guarantee a specific accuracy for
each element in the environmental model as suitable for the
manipulation task.

This paper is organized as follows: In the next section,
related work is discussed and the novel aspects of the
proposed work in the paper are highlighted. Subsequently,
in Section III, the proposed gaze selection mechanism is
introduced including the environmental model, the saliency
measure based on the task acuity and the decision for the
most feasible gaze direction. The proposed mechanism is
then put into the context of a bimanual manipulation task,
and appropriate motion models are defined in Section IV.
The achieved results are discussed in Section V, before
the contribution of the proposed work is summarized in
Section VI.

II. RELATED WORK

In the context of human visual processing, the problem
of gaze selection is often referred to as overt visual atten-
tion. The most prominent computational model for visual
attention has been proposed by Itti et al. ([3]) followed by
several extensions (e.g. [4]) and implementations on robotic
platforms (e.g. [5]). An extensive review of such approaches
can be found in [6]. In contrast to this line of research, where
the goal consists in mimicking the human visual attention
processes, our work focuses on establishing a technically
motivated approach which allows to support manipulation in
a real world environment while making use of active camera
systems.

Another line of research deals with active visual search,
where the goal consists in detecting and recognizing objects
in the extended observable area. Thereby, models for search
targets are usually made available as cue for the search task

([71, [8]). Recently, active visual search has been extended
by means of integrating a spatial memory that allows to fuse
visual information over several gaze directions ([9], [10]).
Further, in [11], the active visual search task is extended to
a treasure hunting task involving not only gaze selection but
also locomotion of the robot in order to detect the object. It
has been shown that such systems already can be applied in
manipulation tasks ([12]). Nevertheless, constraints arising
from manipulation tasks are not taken into account. This
applies to the requirement of a dynamic environmental model
as well as to the inclusion of accuracy requirements in the
saliency measure as proposed in our approach.

The competition for the limited resources of the visual
perception system of humanoid robots stands at the core
of several gaze selection approaches in the context of hu-
manoid locomotion. During locomotion, usually at least two
different perceptual tasks compete: the self-localization of
the robot and the obstacle avoidance. In [13], a gaze selection
mechanism is proposed which minimizes the self-localization
uncertainty as well as the obstacle avoidance uncertainty. In
[14], the authors approach the gaze selection problem in a
RoboCup scenario, where self-localization, obstacle avoid-
ance, and ball detection compete for the limited resources.
Thereby, the environmental model allows for dynamic en-
tities using occupancy grid mapping techniques. The gaze
selection mechanism aims to reduce the uncertainty within
the grid based representation. For this purpose, a saliency
measure is proposed based on the Shannon entropy. Being
tailored for locomotion, these approaches do not propose any
mechanism to include constraints from manipulation tasks in
the gaze selection.

Another possibility of calculating gaze sequences for a
manipulation task consists in using the knowledge from a
motion planning step. In [15], the knowledge from planning
is used to determine the position of objects in the scene and
thus adapt the gaze accordingly. In [16], the gaze direction is
planned together with the robot motion under consideration
of visibility constraints.

In contrast to these approaches and as motivated in the in-
troduction, we seek to establish a gaze selection mechanism
which can handle inaccurate or incomplete world knowledge.
Thus, we propose an online approach to gaze selection in
contrast to the offline calculation of gaze sequences based
on the a-priori model during motion planning. Therefore,
we establish an environmental model which is updated
online and can handle dynamic world entities. This update
is formulated as probabilistic inference process. Similar to
[13] and [14], the goal of redirecting the gaze is then the
reduction of uncertainty in this model. The main contribution
of this work consists in the generation of a task specific gaze
sequence by introducing the task acuity as saliency measure.
The task acuity allows to configure the required accuracy for
entities in the environmental model. Based on this saliency
measure, an approach for selecting the optimal gaze direction
during manipulation is introduced.
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Fig. 2. The proposed approach generates gaze sequences in a perception-
action loop. The processing chain includes fusion in the environmental
model, calculation of the saliency under consideration of task constraints,
and selection of the best gaze direction.

ITI. GAZE SELECTION DURING MANIPULATION TASKS

The proposed gaze selection mechanism adapts the gaze
of the active camera system online in a perception-action
loop. The processing steps are illustrated in Fig. 2. First,
the processed camera views are fused in the environmental
model. Then, the saliency of all entities in the environmental
model is calculated. Thereby, the task acuity allows to con-
figure the accuracy of the active perceptual process. Finally,
a selection mechanism steers the gaze redirection according
to the saliency measure. All three steps of the processing
chain are discussed in detail in the following sections.

A. Environmental Model Representation

In order to support manipulation, the environmental model
needs to cover task relevant objects such as the hands of the
robot or manipulation targets as well as their relevant prop-
erties. While the selection of these objects and properties is
task specific and thus varies, all manipulation tasks share the
common goal of physically interacting with the environment.
Consequently, all entities stored within the environmental
model need to provide at least means to direct interaction
toward them.

To support the physical interaction, the environmental
model is organized as a spatial memory covering 6D pose
information for each entity. For most manipulation tasks, the
number of objects that need to be considered and represented
in the model is limited. Consequently, we choose a sparse
landmark-based approach to represent the environmental
model. For each landmark, its 3D position = accompanied
with the location uncertainty ¥, and its orientation in quater-
nion representation ¢ is stored. The resulting environmental
memory is a collection of the /V task relevant entities:

M = (my,---,mn),
where each entity m; is represented as:
mi = (i, Xz, Gi) -

In order to update the content of the environmental model,
stereo-based object localization is performed in the current
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Fig. 3. The environmental model represents the current state estimation of
the pose of objects relevant to the manipulation task in a fixed ego-centric
reference frame. Each object is associated with a label, a pose estimate, and
a recognition certainty. The figure illustrates the environmental model during
a bimanual manipulation task involving both hands and two objects. The
estimated position uncertainties are indicated by ellipsoids corresponding to
the covariance matrix. For each object the recognition certainty is visualized
with a bar, where green denotes certainty close to one.

view of the cameras. For this purpose, we make use of the
approach proposed in [17] for textured objects and in [18] for
uniformly colored objects. The localization process provides
the position z and the orientation g, for each object. The
uncertainty in the localization process is modeled as additive
Gaussian noise in the position domain with the covariance
matrix .. In order to approximate the 3D localization
uncertainty, we assume 2D additive Gaussian noise of lo-
calization in each stereo image which is passed through
the epipolar geometry using the unscented transform [19].
Further, we calculate a scalar value € € [0, 1] that quantifies
the confidence of the object recognition and localization
process.

The update of the environmental model based on the object
localization result is implemented as probabilistic inference
process. The correspondence between localized object and
memory entity is solved on the spatial domain using the max-
imum a-posteriori estimate. Since only normally distributed
random variables are involved, the update process is realized
using Kalman filtering. The prediction step of the Kalman
filter incorporates the motion and motion uncertainty of the
memory entity, while the update step fuses the predicted
estimate and the current observation. For the prediction step,
we provide a motion model for each entity in the task. These
motion models are task specific and will be further defined
for the application in bimanual visual servoing in Section
V.

In the update step we incorporate the confidence of the
current object localization e as proposed in [20]. Instead
of using just the Kalman gain matrix K, the position and
uncertainty estimation is updated using e - K. The resulting
position estimates are illustrated in Fig. 3. The orientation of



each entity is updated by applying spherical linear interpola-
tion to the stored and observed quaternions. The interpolation
parameter « is derived according to the predicted variance of
the stored entity position (3,,) and observed position variance
(2.). Thereby, we use the radius of a sphere with the same
volume as the uncertainty ellipsoid as quantification for the
amount of uncertainty:

Sl
R= —5——71-
Xe|s +[X:]6

As for the position, we incorporate the confidence of correct
recognition and thus interpolate the orientation with the
factor € - K.

B. Saliency Calculation

The saliency measure in our work encodes the necessity to
fixate a location in the observable area. It forms the basis for
deciding the optimal gaze in the gaze selection step. Thus,
the definition of the saliency measure is the most crucial
element in implementing the gaze selection strategy.

As already discussed in the introduction, each manipula-
tion task has specific requirements on the perceptual process.
In order to allow the inclusion of constraints from manip-
ulation tasks, we propose a saliency measure which can be
configured for specific tasks. For this purpose, we introduce
the task acuity a; which allows to specify the required
accuracy of an entity m; within the environmental model.
More precisely, the task acuity is interpreted as desired upper
bound for the uncertainty in the localization of a memory
entity. As such, the accuracy of the localization estimate
resulting from the active perceptual process becomes the
main driving force for gaze selection. In the following, we
will derive a consistent way to embed the task acuity in a
saliency measure for gaze selection.

The gaze selection strategy aims at reducing the overall
localization uncertainty within the environmental model. For
this purpose, the saliency is calculated for each memory
entity m, stored in the environmental model. A memory
entity with high localization uncertainty 3, should thereby
be assigned with a high saliency value in order to express the
necessity for revalidation. In order to quantify the amount of
uncertainty, the covariance matrix X, needs to be mapped
to a scalar value. A natural quantification of the amount of
uncertainty is provided by the differential entropy, which is
a generalization of the Shannon entropy to continuous prob-
ability distributions. Given that the localization uncertainty
in our work is normally distributed, its differential entropy
can be calculated in closed form using

ui(t) = 5 log [(2me)° 1S, (0] )

where X, (t) is the location uncertainty corresponding to the
memory entity m;.

Using u;(t) as saliency measure would result in a gaze
selection strategy which aims at reducing the uncertainty of
all memory entities irrespective of the manipulation task’s
requirements. In order to include these requirements, we
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Fig. 4. Saliency in relation to localization uncertainty o and task acuity
a. The saliency measure drops to zero once the uncertainty reaches the
requested task acuity.

express the task acuity a;(¢) in the same domain as wu;(t)
using again the differential entropy

bi(t) = %log [(2mea;(t)?)?] . (2)

The resulting measure b;(t) encodes the desired upper bound
for the entropy of the position estimate.

Putting equations (1) and (2) together yields the final
saliency measure s;(t), where saliency is defined as differ-
ence between entropy resulting from the localization uncer-
tainty and minimal entropy desired by the manipulation task

The saliency measure s;(t) in relation to the localization
uncertainty and the effect of a fixed task acuity a are
illustrated in Fig. 4. The plot was generated using a univariate
localization uncertainty with standard deviation o for two
different task acuities a3 = 10mm and as = 30mm. The
logarithmic shape of the entropy measure is desirable, since
it results in a smaller validation effect for entities with higher
localization uncertainty. The task acuity acts as shift and cut-
off for the saliency and assures that once the localization
uncertainty reaches the requested task acuity the saliency
drops to zero. For values smaller zero we set s;(t) = 0 in
order to avoid negative saliency.

In summary, the combination of differential entropy and
task acuity yields a consistent integration of accuracy re-
quirements in the saliency calculation. Moreover, the intro-
duction of the task acuity renders the differential entropy
usable at all for a saliency measure. A major drawback of the
differential entropy, its definition on the interval (—oo, 00), is
compensated with the inclusion of the task acuity in equation
(3). The task acuity limits the differential entropy to [0, 00)
making it suitable for saliency calculation.

C. Gaze Selection

On a humanoid robot, a gaze can generally be realized by
specifying the 6D pose of the camera system plus the version



and vergence parameters of the active cameras. Selecting
gazes in this space would require to initiate full-body motions
of the robot in order to achieve the optimal gaze. During a
manipulation task, it is obviously not suitable to realize a
gaze direction in this way, since its execution would interfere
with the execution of the task. Rather, in order to not affect
the manipulation task, we only consider the active head-eye
system of the robot for realizing the optimal gaze.

For the selection of gaze directions, we further simplify
the head-eye system in order to achieve a representation of
gaze directions which allows computationally feasible online
performance. For this reason, the gaze of the system is repre-
sented on a unit sphere with an origin at the center between
both active cameras. The sphere representation allows to
encode a gaze direction with the zenith 6 and azimuth ¢
of the corresponding spherical polar coordinates. We omit
the rotation around the tangential plane to the sphere, since
this degree of freedom is hard to realize when using only
the head-eye system. The unit sphere is represented using a
spherical graph as illustrated in Fig. 5, where each of the
equidistantly distributed nodes corresponds to one viewing
direction of the active head-eye system.

In order to determine the optimal gaze, each node of the
graph is assigned a rating based on the saliency measure
introduced in the last section. The rating for a node with
coordinates (6, ¢) is calculated as a weighted sum of salien-
cies:

T = Y vi(0,4)- s )

i€l...N

The weight v;(60, ¢) encodes the visibility in the cameras
of each environmental memory entity with the current gaze
direction. In order to determine this visibility, a simplified
camera model is used which approximates the view frustum
of the cameras by a single cone. For each memory entity,
such a cone is intersected with the sphere of gaze directions.
Entities which are situated close to the limits of the cone
are likely to be partially occluded and subject to lens
distortion effects. Consequently, the visibility is attenuated
with increasing distance to the cone center since localization
performance decreases towards the limits. An example of
resulting spherical graphs is illustrated in Fig. 5. For both
cases, four memory entities were involved in the task. In the
first case, two entities are situated at the same position in
the center, resulting in an increased rating of the region. The
second case illustrates how overlapping visibility regions can
generate maxima on the sphere by considering the sum of
saliencies. A gaze direction towards such a maximum allows
to fixate multiple objects at the same time.

The representation of possible viewing directions as nodes
in a spherical graph allows straightforward and efficient
determination of optimal gazes by detecting the maximum
on the spherical graph. However, as pointed out earlier, it
is also a simplification of the active head-eye system since
it assumes a fixed reference frame for the camera system
during calculation of the rating. In reality however, the
cameras move resulting in inaccurate approximations of the

Fig. 5. Gaze directions are represented as a spherical graph with
equidistantly distributed nodes. The nodes are rated according to the saliency
of visible memory entities when taking the corresponding gaze direction.
Thereby, the visibility of the objects in the cameras is approximated by
viewing cones with decreasing localization reliability towards the limits.
The node with the maximum rating is chosen as optimal gaze direction.
Both graphs illustrate an example task involving four objects, where in the
left graph two objects completely overlap in the center.

real saliency distribution. In order to compensate this effect,
we use an iterative procedure for calculating the corrected
optimal gaze direction: First, the rating in equation (4) is
performed using the current posture of the head-eye system.
Then, a candidate gaze direction is determined by searching
the node with maximum rating on the graph. Using this gaze
direction as input, the new posture of the head-eye system is
calculated using inverse kinematics. With this new posture,
the rating procedure is repeated with a sphere centered at
the new reference frame. The iterative procedure stops when
the posture of the head-eye system does not change anymore.
The optimal gaze direction is then approximated by the node
corresponding to the maximum peak on the spherical graph.
In practice, it never occurred that more than one additional
iteration was required, as the posture of the head-eye system
does not change significantly during the iterations.

IV. APPLICATION IN BIMANUAL MANIPULATION

In this section, the proposed method for gaze selection is
applied in a bimanual manipulation task on the humanoid
robot ARMARC-IIL. In previous work, we demonstrated the
execution of bimanual tasks using visual servoing tech-
niques [21]. Thereby, the wide operational space necessitates
head-eye movements in order to observe all objects involved
in the task. In the previous work, the gaze selection was
accomplished in a manner specific for the task. Based on
such an application we will demonstrate, how the proposed
gaze selection mechanism allows to produce gaze sequences
for a given task in a more consistent and general way.

In the following, a brief introduction to the implementation
of the bimanual manipulation task is given. Subsequently,
the motion models required to complete the definition of the
gaze selection mechanism for this task are introduced.

A. Bimanual Visual Servoing

In our previous work we solved bimanual manipulation
tasks such as pouring or carrying big objects using position-
based visual servoing. The benefits of applying visual ser-



voing techniques lie in their robustness towards inaccuracies
in the kinematic model of the system. Thus, task execution
based on visual servoing shares the goal with our approach
in being applicable in the presence of inaccuracies, making
it well suited for complex integrated platforms such as
humanoid robots. In contrast to planned motions, trajectories
resulting from visual servoing are not guaranteed to be
collision-free, thus limiting its applicability to tasks which do
not include possible collision with obstacles. Nevertheless,
the application of visual servoing provides a feasible test-
bed for the proposed gaze selection strategy for two reasons:
First, it allows the execution of manipulation tasks including
multiple objects. Second, the feedback from the perceptual
processes can easily be integrated in the execution by directly
using the content of the environmental model as input. For
the integration with motion planning, a suitable plan moni-
toring and re-planning step would need to be implemented
which goes beyond the scope of this paper.

For bimanual manipulation we observe the two robot
hands and two target objects with the proposed gaze se-
lection mechanism. Their position and orientation from the
environmental model are then used in the position-based
visual servoing approach. The trajectory is generated by
successively reducing the distance of robot hands and target
objects using differential inverse kinematics as discussed
in [21].

To realize the desired gaze directions, we use the ac-
tive head of ARMAR-III offering 3 DoF in the neck, a
common tilt and a separate pan for both cameras. The
joint angles for these 6 DoF are calculated by solving the
inverse kinematics problem using optimization. We use an
objective function that assures the correct gaze direction and
generates natural looking postures. The inverse kinematics
solution is calculated using gradient-free local optimization.
The kinematic model for the head-eye system is calibrated
offline using the approach proposed in [22]. The same model
is used to retain stereo perception while the extrinsic camera
parameters change.

B. Motion models

The prediction of motion within the environmental model
is necessary since not all objects are visible to the cameras all
of the time during the manipulation task. Thereby, two kinds
of motion need to be considered: The motion of the head-eye
system and the motion of entities physically controlled by the
robot such as its hands. Both motions can be approximated
by reading the joint encoders of the robot. Due to remaining
inaccuracies in the positioning and in the kinematic model
of the system, these measurements are not entirely correct,
thus necessitating the inclusion of motion uncertainty in the
motion model.

In order to calculate uncertainties implied by the head
motion, we use the frame of the left camera as reference.
This reference frame changes during head-eye movements.
In order to cope with the inaccuracies in the kinematic model
and in the positioning, we assume additive Gaussian noise in
the joint angles of the head-eye system. Using the unscented

transform, this noise is passed through the system in order
to retrieve an estimate of the uncertainty implied by the head
motion to the position of an entity. The resulting covariance
matrix is used in the Kalman filter prediction step for the
entities.

In order to define motion models for objects in the scene,
we differentiate between the objects which are controlled
by the robot, as e.g. its hands, and objects which are target
of the manipulation. In the current setup, the objects the
robot wants to manipulate are assumed to be static, i.e.
they do not move on their own. Consequently, the pose and
the associated uncertainty do not change over time and no
additional uncertainty needs to be considered in the motion
model. In contrast, for the hands of the robot again the
inaccuracies in the kinematic model need to be considered
with respect to the joint encoder readings of the arm. As for
the head-eye system, we make use of the unscented transform
in order to calculate the uncertainty of motion implied by the
model inaccuracies. The pose of the objects is then predicted
using the resulting covariance matrix within the Kalman filter
prediction step.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

In the following, the proposed gaze selection mechanism
is evaluated in a typical kitchen environment task on the
humanoid robot ARMAR-IIIa. A complex task in this en-
vironment which involves multiple objects and requires two
arms is the pouring scenario, where the robot pours juice
from a container in one hand into a cup held in the other
hand. In the context of gaze selection, the first phase of this
task, the approach and grasping of both objects with the
five-fingered hand is the most demanding part, since four
distinct objects need to be observed: the cup, the juice, and
both hands. Consequently, we restrict the experiments to this
first phase.

For all experiments, we used the green cup and the vitamin
juice placed on a table in front of ARMAR-IIIa as shown in
Fig. 1. The positions of cup and juice were varied within the
workspace of the robot. The desired grasps for both objects
and thus the target poses for visual servoing were predefined
relative to the objects’ local coordinate frames.

In order to initiate the task execution, an estimate of the
position of both hands and both objects needs to be provided
as prior in the environmental model. For the hands, we use
the pose from the kinematic model as initial estimate. For
both objects, a position on the table in front of the robot
is provided as initial estimate. We choose a conservative
initial localization uncertainty with a standard deviation of
500 mm in all directions for the hands whereas the objects
are assigned with a higher uncertainty corresponding to
a standard deviation of 1000 mm. The execution itself is
started once the localization uncertainty of all objects drops
below a standard deviation of d,,,q, = 50 mm.
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Fig. 6. The bimanual visual servoing task requires pose estimates of both
hands and both involved objects with the necessary accuracy. The saliency
measure s(t) encodes the necessity to perform a localization of an element.
For a task acuity of a = 5mm, the plot shows the development of the
saliency over a complete approach and grasp phase. Blue regions indicate
phases where localizations are performed while white regions denote head
movements to selected gaze directions.

B. Saliency during Manipulation

Fig. 6 illustrates the course of the saliency measure s;(t)
for all objects involved in the task over one complete
approach and grasp phase. The task duration from the initial
localization of all objects until successful grasp execution is
about seven seconds, where the first four seconds are required
in order to successively reduce the uncertainty of all objects
under the limit d,,,,,.. Once the uncertainty drops below this
limit, the visual servoing procedure is started until the target
is reached and the grasp is executed.

During the execution of the manipulation task, successive
fixations of the involved objects are performed according to
the gaze selection mechanism. After each redirection of the
gaze, the object localization modules are triggered in order
to determine the pose of all visible objects and to update
the environmental model. The localization is stopped once a
new gaze direction is requested by the gaze selection mecha-
nism. The time intervals, when localization is performed are
marked with blue background in Fig. 6. The update of the
environmental model is performed delayed, once the object
localization processes finish the computation of the pose.

The plot clearly illustrates how the proposed approach
allows to reduce the localization uncertainty by actively
redirecting the gaze appropriately. Each localization results
in a reduction of the uncertainty of the observed entity. Once
the desired accuracy, defined by the task acuity a is reached,
the saliency s(t) drops to zero. For the cup and the juice
box, the saliency drops to zero after a few localizations and
remains there. For the two robot hands, the uncertainty in
the pose estimate increases due to the movement of the robot
arms, accompanied by an increase of the associated saliency.
As expected, the gaze selection mechanism compensates this
increase by initiating additional localizations of the robot
hands.
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Fig. 7. Success rate of the bimanual visual servoing and grasping task
in relation to the selected task acuity. For each setting of the task acuity
10 trials were executed. For a task acuity of 5mm and 10 mm all trials
could be carried out successfully. With increasing task acuity, the success
rate drops.
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Fig. 8. Number of head movements in relation to the selected task acuity.
For lower task acuity, more head movements need to be executed in order
to achieve the required acuity of the environmental model.

C. Influence of the Task Acuity

In order to evaluate the feasibility of the task acuity as
means of integrating manipulation task constraints with the
gaze selection approach, the bimanual task was performed
several times with varying task acuity settings. Thereby, a
task acuity from the range i, = 5 mm t0 A = 40mm
was used with an increment of 5mm. For each setting from
this range, the manipulation task was executed ten times.
After each execution, the success was assessed by lifting both
objects. The resulting success rate in relation to the tested
task acuity is illustrated in Fig. 7. For the task acuity settings
of 5mm and 10 mm the execution succeeded in all ten trials.
The success rate drops with increasing task acuity until no
successful execution is possible with the maximum tested
task acuity of 40mm. These results are into accordance
with our expectations, since a minimal required localization
accuracy of 10 mm for both — robot hand and object — seems
to be feasible in order to produce a stable grasp of the object.

In addition to the success rate we investigated the number
of gaze redirections required to perform the manipulation
task in relation to the task acuity. While higher task acuity



obviously lead to better pose estimates, it also necessitate the
execution of more gaze shifts. An appropriate selection of the
task acuity should minimize the number of gaze redirections
required but still retain the ability to successfully accomplish
the task. As illustrated in Fig. 8 the number of required gaze
redirections drops with increasing task acuity. Considering
the number of redirections, the optimal choice for the task
acuity in the bimanual visual servoing and grasping task
amounts to a = 10 mm.

VI. CONCLUSION

In this work, we introduce a gaze selection approach
tailored for manipulation tasks on humanoid robots. The
applicability in a manipulation task influences the proposed
approach in several ways: First, the proposed environmental
model allows for dynamic entities by the inclusion of motion
models. Second, the saliency calculation includes accuracy
constraints from the manipulation task by means of the
task acuity. Finally, the gaze selection and redirection is
implemented using only the DoF of the head-eye system in
order to not interfere with the manipulation task.

The gaze selection approach was evaluated in a biman-
ual visual servoing task involving four objects that would
fail without the application of active gaze control. Using
the proposed gaze selection approach, the task could be
accomplished with a success rate of 100%. Further, we could
demonstrate that the inclusion of the task acuity allows to
intuitively configure the perceptual processes. The optimal
trade-off between accuracy and number of required gaze
redirections was achieved for a task acuity of a = 10 mm.
Being able to perform the task with this accuracy is feasible
as well as intuitive.

While the evaluation in the context of a bimanual visual
servoing task is suitable to demonstrate the feasibility of the
approach, it only covers a fraction of possible applications
for the proposed gaze selection mechanism. For complex
manipulations involving obstacles and dexterous abilities,
motion planning is required in order to achieve an executable
and collision-free trajectory. Having performed motion plan-
ning, the motion models as well as the required task acuity
could be directly derived from the resulting trajectory and
its relation to the world model.

In summary, the described gaze selection approach enables
the robot to exploit two of its key capabilities, manipula-
tion and active gaze control, in an integrated fashion. The
inclusion of constraints based on the task acuity allows
the adaptation of the generated gaze sequence in order to
support successful task execution. Thus, the proposed ap-
proach substantially contributes in increasing the autonomy
of humanoid platforms.
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