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Abstract— Dynamic systems are a practical alternative to mo-
tion planning in executing robot actions. They are of particular
interest in Learning from Demonstration, as here we aim to
carry out actions in a certain fashion, which might be difficult
to achieve with a planner. Using model-based dynamic systems
in task space enables robots to flexibly reproduce demonstrated
actions. Nevertheless, when dealing with mobile manipulators,
we face the challenge of including the kinematic constraints
of the robot in the action models. In this paper we propose
to couple robot base and end-effector motions generated by
arbitrary dynamical systems modulating the base velocity, while
respecting the robots kinematic design. To this end we learn
an approximation of the inverse reachability in closed form. In
real-world robot experiments we demonstrate that we are able
to maintain kinematically feasible trajectories in the presence
of obstacles and in configurations differing profoundly from the
training scene.

I. INTRODUCTION

The rising expectations on mobile manipulators to serve as
service robots in custom households in the near future calls
for fast development of versatile deployable task learning
methods. Using dynamical systems for trajectory generation
in robotics has the advantage that one can encode complex
robot behavior in a flexible fashion using motion primi-
tives [1] or statistical models [2] in task space. In contrast
to planning approaches [3], where a specific trajectory for
an action execution is hard to implement, motion patterns
can easily be learned. In our previous work we presented
a method to learn mobile manipulation actions from human
demonstrations [4], [5]. The approach records data of human
trajectories and adapts these to the robots capabilities includ-
ing feasible grasp and kinematics. From the adapted data we
learn motion models in task space using dynamic systems
for trajectory generation. While we ensure that the data used
for learning is kinematically sound, no such guarantee can
be given for the motion generated by the learned model.
This is especially relevant in the presence of obstacles not
present in the trained scenes or if performing the learned
actions from starting configurations differing considerably
from the seen demonstrations. It is still a hard problem in
general to generate combined trajectories for base and end-
effector from motion models. While planning approaches
circumvent this difficulty implicitly by exploring paths in
the robot configuration space, this is not easy to cope when
using dynamical systems operating in task space.
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Fig. 1: Illustration of the envisioned coupling of base and manipu-
lator motion. Due to the robots kinematics, for a given end-effector
pose, the possible locations for the base are restricted to the area
bounded by the two blue ellipses, which approximate the inverse
reachability. Trajectories for the PR2’s base and end-effector are
displayed in green and magenta. The ellipses are plotted for the
displayed end-effector pose.

In this work we propose an approach that treats the inverse
reachability constraint as an obstacle avoidance problem
for the robot base motion. The following contributions are
made in this paper. First we present an extension to real-
time obstacle avoidance in dynamical systems [6] to couple
formerly independent robot base and end-effector motion.
Furthermore we present a method to approximate inverse
reachability by geometric objects to allow real-time usage.
This representation is learned from inverse reachability maps
(IRM) [7]. In real-world robot experiments we demonstrate
the feasibility of our approach on a mobile robotic platforms,
the PR2. We show that we are able to generate kinematically
sound trajectories performing a variety of manipulation ac-
tions.

II. RELATED WORK

Dynamical systems are a popular method for flexible mo-
tion generation in the field of Learning from Demonstration.
Pastor et al. [1] rely on dynamic movement primitives to
learn a parametrized non-linear differential equation sys-
tem to reproduce demonstrated motion. Calinon et al. [2]
follow a similar procedure by estimating the dynamical
system’s parameters in a Gaussian mixture model. In this
work we use action learning procedures building upon these
methods. Khansari-Zadeh et al. [6] propose an approach
for dynamic obstacle avoidance applicable with system like
the above mentioned. Parts of our method are inspired by
their system. Inverse reachability maps (IRM) have been
introduced in [7] and [8]. Here we use them as foundation
for a formulation usable in dynamic systems. A different
approach to achieve kinematically sound robot behavior is



pursued by Stulp et al. [9]. They learn to position the robot
through trial-and-error interaction with the environment. No
joint base and end-effector motion is considered though.
Most work on mobile manipulation approaches the problem
from a planning perspective and acts in robot configuration
space while including some task space constraints [3], [10],
[11]. Mike et al. [12] present an experience-graph planning
approach seeded with kinesthetic demonstrations. Constraints
in task space addressing similar actions as carried out by us
are used. Again, no joint motion of base and end-effector is
considered. Another approach building on planned paths in
joint space was presented in the elastic strips framework by
Brock et al. [13]. Obstacles are included as potential fields
and the resulting forces are mapped to joint displacements
using a kinematic model of the manipulator. There is some
work on planing joint base and end-effector motion in task
space. Leidner et al. [14] implement a similar approach for
robot positioning as [7] and further extend it to plan sparse
Cartesian trajectories with respect to the object for a given
task whilst performing reachability checks.

III. APPROACH
Given some dynamic system of the form ξ̇ = f(ξ) to

generate trajectories for base and end-effector of a mobile
manipulator we introduce a concept to couple the two
motions in a kinematically sound way. To this end we
translate the platforms inverse reachability constraints to
an obstacle avoidance problem depending on the relative
pose of base an end-effector. All handled poses ξ and their
corresponding velocities ξ̇ are assumed to be given in state
space. Given an initial state ξ0 a motion trajectory can be
gained by integrating the system recursively. Our approach
on coupling base and end-effector motion is based on the
obstacle avoidance method proposed by Khansari-Zadeh et
al. [6]. In the following we give a brief summary of their
approach followed by our proposed extension to account for
the inverse reachability.

A. Dynamical System Approach to Obstacle Avoidance

A convex obstacle centered at the origin can be described
by a continuous function Γ(ξ) : Rd 7→ R. The function Γ is
C1 smooth and increases monotonically in each dimension
with distance to the center. On the surface of the object Γ(ξ)
equals 1, in the free region around the obstacle we have
Γ(ξ) > 1. For each point ξ outside the obstacle Khansari-
Zadeh et al. define a deflection hyperplane given by its
normal n(ξ̃):

n(ξ) =

[
∂Γ(ξ)

∂ξ1
...
∂Γ(ξ)

∂ξd

]T
(1)

They further define a basis for the deflection hyper-plane

eij(ξ) =


−∂Γ(ξ)

∂ξi
j = 1

∂Γ(ξ)

∂ξ1
j = i 6= 1

0 j 6= 1, j 6= i

i ∈ 1..d− 1, j ∈ 1..d

(2)

Given some dynamics f(ξ), which generates a velocity ξ̇,
they formulate a modulation of said velocity as:

ξ̇ = M̄(ξ)f(ξ) (3)

Where M̄(ξ̃) is a modulation matrix describing the effect of
K obstacles at poses ξk0 in the scene

M̄(ξ) =

K∏
k=1

Mk(ξ̃k) (4)

where ξ̃k = ξk0 ⊗ ξ describes the pose relative to obstacle k.
Each modulation matrix Mk(ξ̃k) describes a transformation
into a basis E, followed by a scaling in its i composing
directions by a factor λi and a transformation back to the
world reference system. In the following the subscript k is
omitted on M , E, D, n and λi for simplicity. Each Mk(ξ̃k)
is assembled as

M(ξ̃) = E(ξ̃)D(ξ̃)E(ξ̃)−1 (5)

where the matrix E is an orthonormal basis

E(ξ̃) =
[
n(ξ̃) e1(ξ̃) . . . ed−1(ξ̃)

]
(6)

and D a diagonal matrix

D(ξ̃) =

λ
1(ξ̃) 0

. . .
0 λd(ξ̃)

 (7)

the λi for each obstacle k are calculated as

λi(ξ̃k) =


1− ωk(ξ̃k)

|Γ(ξ̃k)|
, i = 1

1 +
ωk(ξ̃k)

|Γ(ξ̃k)|
, 2 ≤ i ≤ d

n(ξ̃)T ξ̇krel < 0

1, n(ξ̃)T ξ̇krel ≥ 0
(8)

For i = 1, which corresponds to the part parallel to the
surface normal, this slows down the velocity while increasing
it in the other directions to circuit the obstacle, see Fig. 2.
n(ξ)T ξ̇ ≥ 0 means moving in direction of the obstacle
surface normal, i.e., away from the object, in which case
the velocity should not be modulated.
The weights ωk(ξ̃k) for each obstacle depend on the dis-
tances from ξ̃ to all surfaces (Γ(ξ̃) = 1) and are designed
to be 1 if on the surface of obstacle k and 0 if on another
obstacles surface.

ωk(ξ̃k) =

K∏
i=1,i6=k

Γi(ξ̃i)− 1

(Γi(ξ̃i)− 1) + (Γk(ξ̃k)− 1)
(9)

Consequently λ1 = 0 on the border of object k and we have

n(ξ̃)T ξ̇krel = 0 (10)

on the border of the object, guarantying the impenetrabil-
ity of the surface [6]. For an in-depth description of this
approach we refer the reader to [6].
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Fig. 2: For a convex obstacle, we define a deflection hyper-plane
orthogonal to the surface. The robots velocity vc is accelerated
along the line basis, i.e., e1 and decelerated orthogonally to it,
resulting in a modulated velocity vmod .

B. Coupling Base and Gripper

For our approach we do not only intend for the robots
base to avoid obstacles but also remain in a bounded region
given by the end-effector pose and its inverse reachability.
We assume that we have a continuous region of reachability
bounded by one outer and one inner surface with the same
properties as required for the obstacles above, see Fig. 4. The
definition of the boundaries for our setting will be discussed
in Sec. III-D. Assuming we have an adequate description
of these boundaries, in the following we discuss necessary
adjustments to couple robot base and gripper motion.

We have an inner boundary due to kinematic constraints
of the robot that do not allow the base to get arbitrary close
to the end-effector. This kinematically infeasible region is
treated similarly to ordinary obstacles. We introduce a factor
a < 1 in λ(ξ̃k) for the scaling of the escape motion parallel
to the surface to avoid unwanted orbiting of the base around
the end-effector.

λi(ξ̃k) =



1− ωk(ξ̃k)

|Γ(ξ̃k)|
, i = 1 ∧ n(ξ̃)T ξ̇krel < 0

1 +
a · ωk(ξ̃k)

|Γ(ξ̃k)|
, 2 ≤ i ≤ d ∧ n(ξ̃)T ξ̇krel < 0

1, n(ξ̃)T ξ̇krel ≥ 0
(11)

Analogously we have a bound for the maximum distance
the base can have from the gripper. For this outer boundary
we want the base to stay inside the bounded region instead
of outside. To keep a consistent notation we simply invert
Γ′(ξ̃) = 1

Γ(ξ̃)
in a first additional step. Further we only aim

at keeping the robot inside the bound and not circling it so
that there is no need in modulating the velocity in directions
other than the surface normal. Accordingly we set λ(ξ̃k):

λi(ξ̃k) =

 1− ωk(ξ̃k)

|Γ′(ξ̃k)|
, i = 1 ∧ n(ξ̃)T ξ̇krel > 0

1, 2 ≤ i ≤ d ∨ n(ξ̃)T ξ̇krel ≤ 0
(12)

The modulation proposed by Khansari-Zadeh et al. acts
on the relative velocity between the robot and the obstacles.
They only consider static obstacles, thus all having same
velocities. It is not straight forward to account for varying

velocities among different obstacles and the impenetrability
constraint Eq. (10) might be violated. To overcome this issue
we propose to define a weighted mean relative velocity ˙̃

ξ
based on ωk(ξ̃k)

˙̃
ξbase = ξ̇base −

1∑
ωk

K∑
k=0

ωk(ξ̃k) · ξ̇k (13)

This averaged velocity is modulated and afterwards trans-
formed back to the stationary world system:

ξ̇′base = M̄(ξ) · ˙̃
ξbase +

1∑
ωk

K∑
k=0

ωk(ξ̃k) · ξ̇k (14)

In the proximity of one obstacle this averaged relative
velocity will converge towards the relative velocity regarding
said obstacle and thus ensuring the impermeability of its
surface. When simultaneously approaching two obstacles
with different velocities this cannot be insured. When only
dealing with static obstacles and moving inverse reachability
surfaces according to the end-effector motion, this is solved
by slowing the gripper motion ξ̇′gripper with respect to the
Γ(ξ̃k) value of the nearest obstacle (or inverse reachability
surface) k:

ξ̇′gripper = ξ̇gripper · (Γ(ξ̃k)− 1), if Γ(ξ̃k) < c, (15)

for some c > 1. This way the impenetrability constraint
Eq. (10) can be adhered for continuous time evolution.

C. Discrete Time-Step Adjustment

Due to the nature of the application in practice we do
not have a continuous time flow but rather small integration
times to compute the evolution of the system. Therefore the
impermeability of the object boundaries cannot be guarantied
at all times [6]. We propose to introduce a negative λ1 for
the surface normal when already in collision and velocity
towards center of object. This is of special relevance for the
soft bounds of the kinematic constraints since we here we
need to consider two, potentially opposing, motions as well
as changing shape of the bounds, see Sec. III-D.

λ1(ξ̃k) =

{
−b, Γ(ξ̃k) < 1 ∧ n(ξ̃)T ξ̇krel > 0

b, Γ(ξ̃k) < 1 ∧ n(ξ̃)T ξ̇krel < 0
(16)

With b � 1 the velocity component in direction of the
hyperplane normal will be increased thus avoiding deeper
penetration of the bounds and drive the robot out of the
obstacle on a short path.

D. Modeling Inverse Reachability as Obstacles

We now aim to model the inner and outer boundaries of
the kinematic constraints for the two degrees of freedom
in the translation of the base motion as obstacles based
on the inverse reachability given by the IRM. To gain
continuous regions, we choose geometric primitives, in our
case ellipses as they match the IRM boundaries of the
robot well (see Fig. 4). The shape of these depends on the
gripper configuration, i.e., the height above the ground zg



and its pitch and roll angles βg, γg . The end-effector position
(xg, yg) and yaw θg have no influence on the shape as the
ellipse can simply be transformed to that pose. For many
manipulators, including the PR2’s, the dependence on the
roll angle γg can also be omitted due to the 360° freedom
of the wrist roll joint. Therefore, we determine a mapping
from the height zg and pitch βg to ellipsoids with parameters
(cx, cy, ax, ay, α), defining each ellipses center, major and
minor axis and rotation angle. In a first step we create Nz
discretizations of zg and Nβ discretizations of βg into a total
of K tuples (zkg , β

k
g ) of intersections of the IRM with the

ground each providing sets of points (Xk, Y k) that represent
valid base positions relative to the end-effector. For each of
these K sets we extract the inner and outermost points, which
are then used to fit K ellipses (ckx, c

k
y , a

k
x, a

k
y , α

k) (see Fig. 3
left). To this end, we define an objective function

Ψ =

K∑
k=1

e(Xk, Y k)+ω1

Nz∑
j=2

e(zj−1, zj)+ω2

Nβ∑
l=2

e(βl−1, βl)

(17)
that considers the error for each of the K ellipses to the
respective K IRMs by summing the distances of all points
in the set (Xk, Y k) to the ellipse borders, i.e.,

e(Xk, Y k) =
I∑
i

(
1−
(

(xi − cx)cos(α) + (yi − cy)sin(α)

ax

)2

+

(
(yi − cy)cos(α)− (xi − cx)sin(α)

ay

)2
)2

. (18)

It additionally minimizes differences between neighboring
ellipses by the deviation in parameters depending on z or β
weighted with ωi.

e(zm, zn) =

Nβ∑
i=1

‖czmβi −c
zn
βi
‖2+‖azmβi −a

zn
βi
‖2+d(αzmβi , α

zn
βi

)

e(βm, βn) =

Nz∑
i=1

‖cβmzi −c
βn
zi ‖

2
+‖aβmzi −a

βn
zi ‖

2
+d(αβmzi , α

βn
zi )

(19)

with d(αm, αn) as angular distance. By minimizing Ψ we
obtain sets of ellipse parameters, both for the inner and outer
bound, for each of the k tuples of (zkg , β

k
g ).

In the next step we generate a continuous mapping
(zg, βg) 7→ (c,a, α) for the inner and outer ellipses. To
this end, we use the estimated values from above to build a
Gaussian process model for each of the ellipse parameters,
see Fig. 3. We use a squared exponential covariance function
for a and c and a periodic one for α. We perform hyper-
parameter optimization with Rprob [15]. During trajectory
generation we use Gaussian process regression to retrieve
the parameters for the ellipses for the evolving gripper
configuration (zg, βg). Finally, we use the center and axis of
the ellipse to transform the robot base pose to the respective
ellipse’s frame as ξ̃ to gain the boundary as an ellipse

Fig. 3: The left image shows fits for the inner (red) and outer (green)
ellipses generated for a gripper pose of (zg = 0.9, βg = −0.261).
The green and red points mark the outer and inner bounds of
the considered IRM intersection with the ground. The right image
shows the prediction of a Gaussian Process for the outer ellipses
major axis. x and y axis correspond to zg and βg in ranges of
0.3-1.3m and − π/2-π/2 radian respectively, the color intensity
illustrates predicted values in a range of 0.1-1m. The training points
are superimposed and marked as circles.

Fig. 4: Intersection of the IRM of the PR2 with the ground for the
illustrated robot pose. Legal base poses are marked as small blue
arrows. The ellipses represent our proposed approximation. The
magenta circle sector at the base pose corresponds to an interval
for sound base orientations.

function Γ(ξ̃) given as

Γ(ξ̃) =

(
ξ̃basex

ax

)2

+

(
ξ̃basey

ay

)2

. (20)

E. Constraining the Base Orientation

So far we only discussed how to adapt the translational
motion of the robot base and not its rotation. Since we
are dealing with omnidirectional wheeled platforms our base
orientation is 1-dimensional with current value θc and turning
velocity ω. Due to kinematic limitations the orientation of
the robot θc cannot be arbitrary. We model this as a region
of possible orientations given by a center θ0 and an aperture
θb, see Fig. 4.

To estimate θ0 and θb we generate a lookup table for
(θ0, θb) from the inverse reachability map for the base
position by locally averaging for θ0 and determining the local
bounds for θb. Depending on the robot configuration, i.e., the
gripper height ze and pitch βe and the base position (xb, yb)
we retrieve θ0, θb and update them on trajectory generation
via k-nearest neighbor regression for the evolving robot
configuration. Since θ0 is a circular quantity we calculate its
mean over corresponding points in the unit circle for the k
nearest neighbors. As the lookup parameters (ze, βe, xb, yb)



correspond to different physical entities we include a scaling
for the nearest neighbor lookup. The pitch angles are scaled
such that 1° =∧ 2 cm. Once we have (θ0, θb) we define a
function Γθc indicating acceptability of θc

Γθc(θc, θ0, θb) =

(
θc − θ0

θb

)p
(21)

for some even p ≥ 2. Depending on Γθc(θc, θ0, θb) we define
a modulation factor λθc

λθc =


1, if Γθc < 1 ∧ (θc − θ0) · ω ≥ 0

(1− Γθc), if Γθc < 1 ∧ (θc − θ0) · ω < 0

Γθc , if Γθc ≥ 1 ∧ (θc − θ0) · ω ≥ 0

− Γθc , if Γθc ≥ 1 ∧ (θc − θ0) · ω < 0
(22)

and adapt the angular velocity ω of the robots base.

ω′ = ω · λθc (23)

In the first two cases with Γθc < 1 the orientation is
within the bounds and is either left unchanged if velocity
is pointing to the region center, i.e., (θc − θ0) · ω ≥ 0, or
slowed otherwise. If the base orientation is in an undesirable
configuration, i.e., Γθc ≥ 1, we accelerate to the center θ0.

IV. EVALUATION AND EXPERIMENTS

In this section we evaluate the introduced methods and
show their applicability in real-world robot experiments.

A. Evaluation of Reachability Approximation

First we compare the learned approximation for the inverse
reachability with the original IRM. To evaluate the approx-
imation we determine the false discovery rate, i.e., poses
that are not reachable according to the IRM but are within
our approximation bounds, divided by all poses inside our
approximation. Besides this, the miss rate, i.e., poses that are
legal with respect to the IRM but are not contained in our
approximation, divided by the total number of poses within
the IRM is relevant. We consider the inverse reachability
for gripper heights z ∈ (0.4, 1.2)m and gripper pitch angles
β ∈ (− π/2, π/2) radian. The evaluation is performed on grids
with a step size of 5 cm in the IRM of the corresponding
(z, β) layer. We achieve an overall false discovery rate of
2.8 % and a miss rate of 10.7 %. This shows that the risk
of falsely accepting critical poses is low. The slightly higher
miss rate is not problematic since it only means that we
potentially discard reachable poses. This indicates that the
ellipses indeed are a good approximation of the IRM shape.
The Gaussian process regression of the ellipses parameters
is smooth with zg and βg , compare right image in Fig. 3
for the example of the major axis of the outer ellipse. The
results are similarly smooth for the other ellipse parameters.

B. Evaluation of Generated Trajectories

Next we test the joint robot base and end-effector motion
generation using the approximated inverse reachability as the
foundation for their coupling. In [4], [5] we described how
to learn actions from human demonstration and how they can

Kinematically successful
Avg change poses #runs total

to demo w/ w/o w/ w/o #runs
Grasp handle 0.35m, 0° 100% 96.4% 4 2 4
Grasp handle 0.58m, 100° 99.8% 90.6% 3 0 4
Grasp handle 0.55m, 270° 100% 98.8% 4 3 4
Grasp handle 0.98m, 175° 99.5% 90.0% 3 0 4
Open door obstacle influence 100% 96.8% 1 0 1
Grasp cabinet no obstacle 100% 94.7% 8 3 8
Grasp cabinet additional obstacle 100% 65.4% 8 0 8
Open cabinet no obstacle 100% 100% 1 1 1
Open cabinet additional obstacle 99.1% 51.8% 3 1 4

TABLE I: Evaluation of the generated trajectories. The averaged
distances refer to the translational and rotational deviations for the
base pose in training and execution. w/ and w/o refer to evaluation
applying our approach respectively without it. The given percentage
of successful poses is a mean over all runs for the setting. The
last two columns specify the number of successful runs without
kinematic failures.

be imitated using dynamical systems. Here we evaluate our
approach for some of the actions learned in [4], [5], namely
grasping a room door handle, opening and driving through
the door, grasping a cabinet door handle and opening it. For
the evaluation we computed trajectories for the mentioned
tasks, using the system described in [4], with and without
the proposed modulation based on inverse reachability. We
compare the percentage of poses with no kinematic solution
for the generated base and end-effector trajectories in Table I
for different settings. For the two grasping task we vary
the robot’s starting configuration towards higher distances
as seen in the demonstrations in the learning phase. For
grasping the door handle we divided the trials into four
groups depending on the starting configurations, see Table I.
The given distance to the demonstrations is a mean over
the trials. For grasping the cabinet door handle we also
included a wide range of initial poses and added an obstacle
in the scene. Trials with and without obstacles from Table I
were performed with identical starting poses. For the task
of opening the room and cabinet doors the starting pose is
highly constrained due to the grasped handles. For the room
door however, the presence of the door frame as obstacle
has a high influence on the dynamic trajectory generation.
For opening the cabinet door we added obstacles at different
locations influencing the generation of the base trajectory.
As Table I shows, our approach is able to flexibly react
to strong deviations in starting configuration as well as
changes in the environment. Of the 38 trials only 3 contained
kinematically critical poses and even in these cases the
amount of failures was below 1 %. Generating trajectories
without applying our proposed modulation only works for
cases with small deviations from training and little obstacle
influence. Examples for two of the trials are shown in Fig. 5.

C. Validation of Execution of Trajectories

In a last step we validate the generated trajectories by
executing them on the PR2 both in simulation and real
world experiments for the actions mentioned above. We
execute each action five times both in simulation and real
world. For the grasping actions we vary the initial poses
while the opening actions are executed starting from the end



Fig. 5: Exemplary work cases of the proposed approach with the
PR2 robot. Generated trajectories are displayed in magenta for the
gripper, green and red for kinematically feasible and infeasible base
poses. The green square and magenta circle indicate the goal poses.
In the top row the task is to grasp a door handle which is to
right of the robot (not in image). On the top left we generated
end-effector and base trajectories without considering the inverse
reachability. We see that the base trajectory penetrates the inverse
reachability bounds, causing impracticable configurations. On the
top right the base trajectory respects the constrains imposed by
the inverse reachability ellipses resulting in a different,executable,
trajectory. The bottom row shows the task of opening and driving
through a door. The obstacles representing the door frame are shown
as the gray area. Again on the left we encounter kinematic problems
which can be avoided by using our proposed approach like depicted
in the center, and right image, at same execution time respectively
shortly after the left image.

configurations of the respective grasping actions. We observe
that all trajectories without kinematically infeasible poses
could be executed without problems. Even a small amount of
kinematically critical poses were handled by the controllers
of the robot. At these poses the end-effector motion stops
until the next kinematically sound pose is reached resulting
in small jumps on execution. Long segments of unreachable
poses, however, resulted in inexecutable trajectories. These
cases were only observed without our proposed modulation.

V. CONCLUSION AND OUTLOOK

We presented a method to approximate the inverse reach-
ability of mobile platforms by a parametrized ellipse based
on inverse reachability maps. We further introduced an
approach to use this representation to couple independent
robot base and end-effector motion with regard to kinematic
feasibility. In our evaluation we show that our system is able
to ensure kinematic feasibility when generating trajectories
for mobile manipulation actions with dynamic systems. In
robot experiments we demonstrate that we can generalize our
action models regarding varying robot starting configurations
and adapt to changes in the scene. In future work we aim at

Fig. 6: The PR2 executing generated trajectories starting from a
pose as seen on the left image. The cabinet, highlighted by the red
box, is grasped (top right) and opened (right bottom).

developing a free approximation of the inverse reachability
bounds without restriction to a certain geometric form.
Depending on the nature of the task, an inversion of the
reactivity could be beneficial, where the end-effector velocity
is modulated to evade the base motion. Further, a combined
approach to modulate the base position and orientation could
be addressed instead of having independent corrections.
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