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Abstract— In this paper we present a framework for combining
force and visual feedback in the task space to deal with humanoid
interaction tasks like open doors in a real kitchen environment.
We present stereo-vision methods for markerless recognition
and estimation of environmetal elements for applying force
control strategies for compliant execution using a 6D force-
torque sensor mounted in the humnaoids’s wrist. The framework
consists of components for model-based self-localization, visual
planning, door recognition, grasping based on visual servoing,
real time handle tracking and task execution considering force
feedback during the physical interaction with the environment.
Experimental results on the humanoid robot ARMAR-IIIa are
presented.

I. INTRODUCTION

The development of humanoid robots for human daily
environments is an emerging research field of robotics and
a challenging tasks. Recently, considerable results in this field
have been achieved and several humanoid robots have been
realized with various capabilities and skills. Recently, inte-
grated humanoid robots for daily-life environment tasks has
been successfully presented with various complex behaviors
(see e.g. [1]). However, in order for humanoid robots to enter
daily environments, it is indispensable to equip them with
fundamental capabilities of grasping and manipulating objects
encountered in the environment and of dealing with kitchen
appliances and furniture such as fridge, dishwasher and doors.

The work presented in this paper is an extension of our
previous work (see [2], [3], [4]) toward the realization of
complex manipulations and grasping tasks in a kitchen en-
vironment. In this work, we are primarily interested in a
frequently needed task in daily life: manipulating door tasks in
a kitchen environment where the robot has to handle significant
forces during the physical interaction with the environment.

Early work in humanoid manipulation considered body
balancing [5] and collision-free motions to satisfy balance
constraints [6], however they do not consider the physical
interaction of the robot with the objects to be manipulated.
In [7] the ZMP balance criterion is extended for the task
of pushing an object with known dynamics and in [8] the
physical interaction of a humanoid robot with unknown, large
and heavy objects to learn the models of these objects.

Further work on physical interaction for door opening tasks
has been proposed by Prats et al. in [9], [10] and [11]. In [9],
only force feedback is used for task-oriented grasping and
task frame estimation. In [10], artificial markers are added

to visually estimate the task frame and in [11] both visual
and force feedback are combined to solve door opening tasks.
The approach we present in this paper is inspired by the
work proposed by Prats et al. in [9], [10] and [11]. We
investigate the integration of visual and force feedback to deal
with similar task executed by a humanoid robot in a human
centered environment, without using any artificial markers on
the furniture.

In our work, we combine visual and force information
to deal with the complexity of the underlying environment
where the visual appearance, physical properties and dynamic
behaviors of the elements are complex and time-varying.
Therefore, we use both stereo vision task frame sensing and
force feedback task frame estimation and their combination.
In this manner, it is possible to simultaneously overcome the
limitations of both sensing paradigms while generating syn-
ergy by exploiting the structure of the physical and modeled
spaces.

The role of vision in our approach is to link the modeled
world with the visual space. This is possible since image
processing algorithms coupled with a model-based inference
mechanism are effective for recognition without object contact
and they provide information over a large area on a variety of
conditions. On the other hand, the force feedback is responsi-
ble of the compliant interaction with the environments, deliver-
ing precise information upon contact. We present stereo-vision
methods for marker-less recognition and estimation of the 6D
task frame (the door and its axis) and the pulling direction
(position and orientation of door handle) and force control
strategies used for both, the task frame estimation and the
compliant task execution, utilizing a 6D force-torque sensor
at the humanoid robot wrist.

The remaining of the paper is organized as follows. In
section II the general framework of our method is described.
The task frame estimation methods, based on force- and
vision-sensors, are explained in section III. In section IV the
task execution on the humanoid robot ARMAR-IIIa along
experimental results are presented. Conclusions and future
work are given in section V.

II. GENERAL FRAMEWORK

A. System overview

This work is performed on the humanoid robot ARMAR-
IIIa [12], which consists of seven subsystems: head, left arm,



right arm, left hand, right hand, torso, and a mobile platform.
The head has seven DOF and is equipped with two eyes. The
eyes have a common tilt and can pan independently. Each eye
is equipped with two color cameras, one with a wide-angle
lens for peripheral vision and one with a narrow-angle lens
for foveal vision. The upper body of the robot provides 33
DOF: 14 DOF for the arms, 16 DOF for the hands and three
DOF for the torso. Each arm is equipped with a five-fingered
hand with eight DOF. Each joint of the arms is equipped with
motor encoder and axis sensor to allow position and velocity
control. In the wrists, 6D force-torque sensors are used for
hybrid position and force control and for the realization of
compliant arm movements as presented in [2].

B. Physical Interaction

Our framework for coupling visual- and force-sensor infor-
mation is based on our previous work on physical interaction
in household environments [2] and on the Task Frame Formal-
ism (see [13] and [14]), because it is suitable for compliant
task execution. In our work, the task frame T is defined
as a Cartesian coordinate system aligned to the object to
manipulate, in which the task is defined, using velocity or force
references. However, the movement of the arms is controlled
in the Cartesian coordinate system E , attached to the end-
effector, where the inverse jacobian matrix is used to transform
the Cartesian into joint-velocities.

Due to the fact that the task frame is always aligned to
the object and not to the end-effector of the humanoid robot,
the relative pose between the end-effector and the task frame
must be computed, in order to assign the task frame jacobian
matrix. Using this matrix, the desired task frame velocity ẋd
is transformed into the joint velocities q̇. Thus, it is necessary
to estimate the task frame online during task execution to be
able to compute the relative pose between the two frames (see
Sec.III-A and Sec.III-B).

The force control law introduced in [2] is running during the
task execution, based on a Cartesian impedance control using
a joint velocity controller. To cope with the joint redundancy
of our humanoid robot, a joint limit avoidance secondary task
is used. Additional redundant DOFs are provided in the task
space, if one (or more) Cartesian DOFs are not required for
task execution.

C. Model and Appearance-Based Object Recognition

The world-model and the available context acquired during
self-localization (the associations between model elements
and visual percepts) will not only make it possible to solve,
complex visual assertion queries, but it will also dispatch them
with a proficient performance. In our experiments, we have
used this knowledge to switch between our components for
door and handle recognition and pose estimation, i.e. a context-
less component, as described in [15] deals with a wide distance
range but with reduced tolerance to perturbations. Then, a
middle-to-close distance algorithm [16] is used in closer range
distances without occlusions tolerance mechanisms. Finally,

the following technique uses context information, to easily
ignore very intricated recognition outliers.

The pose estimation of the partial occluded door handle,
when the robot has already grasped it, turns out to be a
difficult task because there are many perturbation factors.
No size rejection criteria may be assumed, since the robot
hand is partially occluding the handle surface. Secondly, the
hand slides during task execution, producing variation of the
apparent size. No assumption about the background of the
handle could be made, because when the door is partially open
and the perspective view overlaps handlers from lower doors,
the same chromatic distributions appear. On the top of that,
the glittering of the metal surfaces on both, robot hand and
door handle, produce very confusing phenomena, when using
standard segmentation techniques [17]. The state of the art
in parameterless robust segmentation techniques [15] deliver
acceptable results, however they are not suitable for tracking
purposes due to their performance speed. Their runnig time is
approximately 1-6 seconds, depending on the selected (which
is a problem itself) spatial and chromatical band widths.

In this context, we propose an application dependent, but
very robust and fast technique (15-20 ms) in order to simulta-
neously segment the regions and erode the borders, producing
non-connected regions which suits our desired preprocessing-
filtering phase as follows. First, the raw RGB-color image
Iχ(x, y) ∈ N3 is used to compute the power image using
Eq. 1. These two images are illustrated in Fig.1.

Iφ(x, y) = (Iχ(x, y)T Iχ(x, y))n (1)

Fig. 1. a) Left Input Image b) The Power Image

Then a linear normalization and adaptive thresholding pro-
duces the binary image IB(x, y) ∈ {0, 1} which is used to
extract the blobs Bk and build feature vectors for rejection
purposes.

The feature vector F (Bk) (see Eq. 3) is formed by the blobs
area ω(Bk), the energy density δ(Bk), and the elongation
descriptor, i.e. the ratio of the eigenvalues Eσi,j

(Bk) of the
energy covariance matrix MBk

expressed by Eq. 2.

[
−−−→
Eσ1,2Eσ1,2 ] = SV D(MBk

) (2)

F (Bk) := [δ(Bk), ω(Bk), Eσ1(Bk)/Eσ2(Bk)] (3)

This characterization enables us to reject blobs when verify-
ing the right-left cross matching by only allowing candidates in
pairs (Bk, Bm) where the criterion K(Bk, Bm) := ‖Eσ1

(Bk)·



Eσ1
(Bm)‖ > Kmin is fulfilled, i.e. the orientation of their axis

shows a discrepancy less than arccos(Kmin) radians.
Subsequently, the interest point Ip is selected as the further-

est pixel along the blobs main axis in opposed direction1 of
the vector ΓR, i.e. unitary vector from the door center to the
center of the line segment where the rotation axis is located
(see Fig.4). This vector is obtained from the world model and
localization context by using virtual cameras in the model.
Moreover, the projected edges of a door within the kitchen aids
the segmentation phase to extract the door pose and improves
precision by avoiding to consider edges pixels close to the
handle, because in this region a hough transformation coupled
with a linear regression for finding the 2D-lines will fail, see
Fig.2.

Fig. 2. Model and Appearance-Based Object Recognition

The key factor of this vision-to-model coupling relies on
the fact that very general information is used, i.e. from the
projected lines and blobs using the virtual camera and the
scene graph, only their direction is used (plugged into a noise-
tolerant criterion Kmin) and not the position itself, which
differs to the real one, due to the discretization, quantization,
noise and uncertainty accumulated starting with the self-
localization, the camera calibrations up to the joint-encoders
deviations.

III. ONLINE TASK FRAME ESTIMATION

A. Force-based Estimation

In our previous work [2], we use only the force sensor infor-
mation, provided by two 6D force/torque sensors, mounted at
both wrists of the robot, to estimate the task frame. The open
direction, which is the z-axis of the task frame, is initially
set to a normal vector on the kitchen furniture, because we
assume a fully closed door. The x-axis is a normal on the floor
and the y-axis is their cross-product. The task frame origin is
calculated by adding a translational displacement to the end-
effector frame position.

During execution, the door rotates and therewith the task
frame changes. Our solution is to record a history of the task
frame positions during task execution in order to estimate the
new frame adjustment.

The manipulated furniture and the error in the frame esti-
mation generate small forces in the hand. The robot tries to

1The context opposed direction means where the scalar product evaluates
to maximal negative value.

minimize this forces, by updating its hand position. Further-
more the robot aligns the task frame z-axis with the vector
tangent to the saved task frame positions, plotted as red dots
in Fig.3.

Fig. 3. Trajectory of the task frame positions, plotted as red dots. Furthermore
the z-axis (blue) of the task frame is displayed, aligned to the trajectory vector
tangent

In summary, the task frame is aligned to the hand movement
and the knowledge of the particular mechanism of the furniture
is not required during task execution.

B. Vision- and Model-based Estimation

One advantage of our approach is the usage of the vision-to-
model coupling dealing with limited visibility (3D reasoning).
In order to provide the required information for the interaction
module, it is necessary to estimate the interest point Ip, and
the normal vector Np of the grasping element (see Fig.4), e.g.
the door handle. Translating the interest point along the handle
direction with a offset, acquired from the model, the midpoint
Mp of the handle is calculated, which is used as origin of the
task frame T .

Fig. 4. Door and handle recognition

Because of the sizes of both, the door and the 3D field of
view, it can be easily corroborated that the minimal distance
within the subspace Ψ (where the robot must be located for



the complete door to be contained inside the robots 3D field of
view) may lie outside of the reachable space of the humanoid
robot. In this situation, the geometric definition of the door (a
rectangular prism) allows the planner to switch from pure data
driven algorithm to the following recognition approach which
only requires three partially visible edges of the door and uses
the context (robots pose) and model to assert the orientation
of the door’s normal vector and as an aftereffect the door’s
angle of aperture.

The door axis recognition uses the following facts: first,
a 2D-line Υi on an image and the center of its capturing
camera Cj define a 3D-space plane Φ(i,j), hence two such
planes Φ(L,L) and Φ(µ(ΥL,ΥR),R), resulting from the matching
µ(ΥL,ΥR) of two lines in left and right images in a stereo
system define an intersection2 subspace: Λi = Φ(L,L) ∧
Φ(µ(ΥL,ΥR),R),i.e. a 3D-line. These 3D-lines Λi are subject
to noise and calibration artifacts. Thus, they are not suitable
to compute 3D intersections. However, their direction is robust
enough for our purposes. Next, the left image 2D points H(L,i)

resulting from the intersection of 2D-lines Υi are matched
against those in the right image H(R,j) producing 3D points
X(R,j) by means of triangulation in a minimal square fashion
[18].

Using this facts, it is possible to acquire corners of the door
and directions of the lines connecting them, even when only
partial edges are visible. Herein, the direction of the vector ΓR
is the long-term memory clue simultaneously used to select
3D line edge (direction DAxis and its point PAxis, see Fig.4)
corresponding to the door rotation axis and ensuring that the
direction vector of the axis points upwards, avoiding that the
normal vector calculations may be confused with its twisted
pair.

Furthermore, the online handle tracking uses the previous
valid position of the interest point Ip, to restrict the search
region, using the predicted trajectory (only to limit the search
region in the image) and a fixed radius, see Fig.1. In this
way the power image computation performs fast calculation
by searching the region of interest. Using the new tracked
interest point the midpoint MP of the door handle is updated.
Afterwards, the normal vector Np on the door, see Fig.4, is
computed using the axis of rotation R := [DAxis, PAxis],
shown in Eq. 4.

Np =
(PAxis − Ip)×DAxis

‖(PAxis − Ip)×DAxis‖
(4)

Subsequently, this calculated normal vector Np is used to
adjust the task frame z-axis, in order to provide a normal
pulling direction. Simultaneously the knowledge about the
handle is used to update the x-axis, which is parallel to
the handle, and furthermore their cross-product is calculated,
resulting in the y-axis of the task frame T .

2The plane-plane (in Hessian normal form) intersection operator ∧ provides
a point on the line and its direction.

Self-Localization

Visual Planning

Grasping

Handle TrackingDoor Recognition

Physical Interaction

Model

Fig. 5. The main components of the system: self-localization, visual planning,
door recognition, handle tracking, grasping, and physical interaction.

IV. TASK EXECUTION AND RESULTS

A. Assignment of Tasks

The experiment of door opening in a regular kitchen envi-
ronment with the humanoid robot ARMAR-IIIa is performed
several times with different modalities during the physical
interaction phase:

1) During the first execution we only use the force sensor
channel, according to our previous work [2].

2) The novel stereo vision tracking methods are used to
perform the task in our second experiment. The force
sensor information is used for compliant movement of
the robot hand, but not for the task frame estimation.

3) Furthermore the results of the task space sensor fusion,
using the visual- and the force-based estimation of the
task frame, are shown.

However, the opening velocity, applied in the direction of the
task frame z-axis (normal on the door, in order to minimize
the external forces), is set to 20mm/s during all three
experiments. The complete task of door opening, illustrated in
Fig.6, is split into the following different modules (see Fig.5).
The task assignment to the robot is done by using speech
commands, where a human has to specify the door, which the
robot should open.

B. Preliminary Task Execution

1) Self-Localization: In this first phase of the task exe-
cution the robot localizes itself in the kitchen. The visual
self-localization procedure consists of three elements: a col-
lection of active visual perception-recognition components
(see Sec.II-C), a world model and a statistical hypotheses
generation-validation apparatus. The multiple recognized el-
ements (Percepts) are fused, filtered and mapped into the ego
center frame of the humanoid robot. These ego-percept sub-
graphs are carefully matched against the model by considering
the noise in the relative position and orientation among them.
Ideally, the match provides enough information to compute the
relative pose of the ego center frame E as a kinematic chain by
using the inverse transformation of the perception frame P and
the deducted frame transformation from the world-modelWM ,
like E = [WM ][P]−1. The runtime for this module is 15-20
seconds using 20 real stereo images. For detailed explanations
and experimental results see [19].



Fig. 6. The humanoid robot ARMAR-IIIa interacting with a cupboard in the kitchen environment. The first two pictures in the first line show the door
recognition and grasping. The following illustrate the physical interaction on the cupboard. At this the magenta circles represent the tracked interest point Ip.
Using Ip, the midpoint Mp of the handle is calculated and parallel the normal vector on the door Np is assigned. The result of this calculations is shown as
the task frame T , tagged with a red origin (Mp). The x-axis is drawn in red, the y-axis in green and the z-axis (Np) in blue. Additionally the pose aligned
hand tracking and end-effector frame are displayed with the same axis colors. In the last picture the tracker cannot find the handle, because the door covers
it. The whole door opening by the humanoid robot ARMAR-IIIa is available in the accompanied video.

2) Visual Planning: Visual planning for physical interaction
involves three fundamental aspects: First, once the visual target
has been established, the corresponding target-node provides a
frame and the definition of a subspace Ψ where the robot has
to be located, therewith the target-node can be robustly rec-
ognized. Subsequently, the visual planner uses the restriction
subspace and target node frame to generate a transformation
from the current pose to a set of valid poses. These poses
are submitted to the navigation layer [12] to be unfolded and
executed into a safe trajectory. Once the robot has reached his
desired position, the planner uses the description of the node
to predict parametric transformations and properties (how the
image content should look like). The general and practical
usage of this concept requires specific tailored knowledge
for image processing (2D Reasoning), space inference (3D
Reasoning) and the expertise to implement natural compelling
functionality, depicting elaborated dynamic states of the nodes.
These are the complex long-term memory and attention com-
ponents of the cognitive architecture [20], e.g. door opening,
faucet flowing [1] etc.

3) Door Recognition: This module provides an initial
recognition of the door, using the methods introduced in
section II-C, even if the visibility is limited. The interest point
IP and the axis of rotation are assigned, which are used later
by the handle tracking module, to restrict the handle search
region, in order to increase the performance.

4) Grasping: The first part of this module is the grasp plan-
ning. Depending on the recognized door, different strategies
are chosen, see section IV-B.3. Doors with a left sided rotation
axis are opened with the left hand, the other mechanisms with
the right one. Grasp types used in the task are determined in
an offline manner. For reaching the handle, we used a position-
based visual servoing approach as described in [4], which is
based on [21] and [22]. The control loop of the visual servoing
minimizes the Cartesian error between the destination, which
is the task frame T and the actual end-effector frame E to
zero. The hand orientation is calculated using the arms direct
kinematic.

During the execution of the servoing task, the error between
the task- and the end-effector-frame mentioned above is min-
mized. If the error falls below a defined threshold, the 6D force
sensor information is taken into account, to indicate a contact
with the handle. Once this contact event occurs, the grasping
procedure starts. To react on minor inaccuracies, the control
of the robot arms is switched to zero force mode, assisting the
alignment of the hand and thus improving the robustness of
the grasp.

5) Handle Tracking: The handle tracking module provides
the handle midpoint MP , the normal vector on the door NP
and finally the task frame T , as explained in section III-
B. Robustness and reliability of the tracker are one of the
key achievements of our approach. The figure 7 shows the
tracked Cartesian position of the handle midpoint MP , related



to the ego center frame E . The tracked position follows the
movement of the cupboard handle until iteration 165, because
the door covers the handle after this point of task execution.
This case is shown in the last picture of Fig.6.

Subsequently, the second experiment, see Fig.7, shows the
robustness of the handle tracker against external disturbances.
Between iteration 65 and 123 the two cameras of the humanoid
robot are covered, causing an interruption of the handle
tracker. During this part of execution no new interest point
is estimated and the tracker provides the last predicted one to
the interaction module, see Fig.5.

Fig. 7. Cartesian position of the handle midpoint, related to the ego center
frame. After iteration 143 the door itself covers the handle and thus the
position estimation is not reliable any more. Between iteration 65 and 123
the cameras of the humanoid robot are covered, which causes an interruption
of the handle tracker, because no new interest point could be estimated.

C. Force Based Physical Interaction

The results in this section are based on the methods of our
previous work [2]. After the handle is grasped, the robot uses
the above introduced online force sensor based task frame
estimation method, to open the cupboard, see section III-A.
Because of the alignment of the task frame z-axis (normal on
the door), where the opening velocity is assigned, the external
forces are reduced. However during this experiment only the
force sensor information is used, which causes external forces
at the robot hand, displayed in Fig.8 (red curve).

In summary, the door opening task could be successfully
completed with our proposed method, but the errors in the
robot kinematics and the inaccuracy of the task frame position
tangent vector leads to considerable external forces appeared
at the robot hand.

D. Stereo Vision Based Physical Interaction

To reduce the external forces, which appeared during the
first experiment, described in Sec.IV-C, online stereo vision-
based methods are used to estimate the task frame during task
execution, according to section III-B. This methods lead to a
more precisely estimation of the opening direction.
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Fig. 8. Comparative plots of the forces appeared at the task frame, without
the force in the door normal (pulling) direction. The blue curve shows our
improved results, which uses a vision estimated task frame and force feedback.
Our previous work is illustrated in the red curve, wherein the task frame is
estimated by the history of the task frame position.

The complete task execution is shown in Fig.6, including
the task frame T and the end-effector frame E with a red
origin and the blue z-axis, the green y-axis and the red x-
axis. Fig.8 compares the summarized Cartesian force error,
except the force in the normal direction on the door, between
this experiment (blue curve) and our previous experiment (red
curve), see Sec.IV-C. It can easily be seen, that the visual
estimation of the task frame is leading to smaller external
forces on the hand, produced by the handle and the door
mechanism.

Combining stereo vision and force control provides the
advantage of real-time task frame estimation by vision, which
avoids the errors of the robots kinematics and adjustment of
actions by the impedance control. Some inaccuracies concern-
ing the vision modules are caused by environmental influences,
e.g. people crossing, changing light conditions. Therefore the
force component manages to balance these external forces and
torques, which is visualized in Fig.8.

E. Physical Interaction by Coupling both Sensor Information

In conclusion, the first two experiments show, that neither
the force-based estimation nor the vision-based estimation
of the task frame are satisfying on their own, see table I.
Furthermore, the vision estimation does not work, if the handle
is completely covered or abruptly changing light conditions
disturb the recognition, which leads to a wrong task frame
alignment.

TABLE I
COMPARISON BETWEEN THE TASK FRAME ESTIMATION REALIZATIONS

Force Sensor Stereo Vision Combined
Pro reliable accurate reliable

accurate
Contra inaccurate susceptible -

For this reason, the two sensor channels for task frame
estimation are combined by introducing a vision-gain Vg and
a force-gain Fg , connected by Fg = Vg − 1. At the beginning
of the interaction phase, Vg equals 1. This indicates, that the
stereo vision based estimation is used exclusively, because the
last two experiments show that the vision estimation is more



precisely than the force estimation. During task execution, this
gain could be decreased, depending on the quality of the stereo
vision task frame estimation, due to the fact that the estimation
by force is more reliable.

To determine the quality of the stereo vision estimation, the
distance between the actual estimated handle midpoint MP

and the actual force sensor estimated task frame position,
is calculated, see section III-A. The vision gain is inverse
proportional to the estimation error, which is only considered
between 35 and 70mm, see Fig.9 and 10. Using the gains,
both estimated task frames are weighted and added. In detail,
the axis- and the position-vectors of the task frame, the vision-
based estimation as well as the force-based estimation, are
multiplied by the associated gain and subsequently added.

The results of our first experiment utilizing the fused task
frame estimation are shown in Fig.9, 10 and 11.
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Fig. 9. Error between the visually- and kinematically-estimated task frame
position. This value influences the force-vision gain, see Fig.10. After iteration
165 the door itself covers the handle, cf. last picture of Fig.6, and thus the
position estimation is not reliable any more.
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Fig. 10. Gain between visual- and force-sensor estimated task frame. If the
vision gain equals one, the interaction module only uses the visually estimated
interest point for task execution. The information appreciated by the force
sensor is taken into account, if the vision gain decreases (Fg = Vg−1). After
iteration 165 the door itself covers the handle and thus the visual estimation
is not reliable any more, which leads to a decreasing vision-gain.
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Fig. 11. Comparative plot of the forces appeared at the task frame, without
the force in the door normal (pulling) direction.

To demonstrate the robustness of our approach, the stereo
cameras of the humanoid robot are covered between iteration

67 and 122 during the second experiment. The figure 12 shows
that the robot cannot find a new interest point, because of the
covered cameras, which results in an increasing estimation
error. Therefore, the force gain increases over this period of
time, see Fig.14. After the removal of the coverage at iteration
122, the robot directly recognizes the interest point and the
force gain is decreased. The growing position error after
iteration 144 has the same reason as in the first experiment,
namely the handle covering by the door itself.
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Fig. 12. Error between the visually- and kinematically-estimated task frame
position. This value manipulates the force-vision gain, see Fig.13. After
iteration 143 the door itself covers the handle, cf. last picture of Fig.6, and
thus the position estimation is not reliable any more. Between iteration 65
and 123 the cameras of the humanoid robot are covered, which causes a
increasing position error, because no new interest point could be estimated.

0 

0,5 

1 

1,5 

1  12  23  34  45  56  67  78  89  100  111  122  133  144  155  166  177  188  199 

Fo
rc
e‐
V
is
io
n 
G
ai
n 

Itera0on 

Fig. 13. Gain between visual- and force-sensor estimated task frame. If the
vision gain equals one, the interaction module only uses the visually estimated
interest point for task execution. The information appreciated by the force
sensor is taken into account, if the vision gain decreases (Fg = Vg − 1).
After iteration 143 the door itself covers the handle and between iteration 65
and 123 the cameras of the humanoid robot are covered, which leads to a
decreasing vision-gain, because the visual estimation is not reliable any more.
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Fig. 14. Comparative plot of the forces at the task frame, without the force
in the door normal (pulling) direction.

In summary, the figures 8, 11 and 14 show, that the external
forces are reduced to a minimum during the whole task
execution, due to the combination of both very different sensor
channels in task space. However, interferences can always
appear, which makes the integrated Cartesian impedance con-
trol necessary during the physical interaction. The entire door



opening task by the humanoid robot ARMAR-IIIa is available
in the accompanied video.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented a framework for coupling
force and vision information in the task space, to accomplish
door opening tasks in a real kitchen environment with a
humanoid robot. First, the humanoid robot localizes itself
in the environment using model-based vision. In the next
step the door is recognized. Later, using position-based visual
servoing the system is able to grasp the handle. Furthermore,
the implemented force control law and the real-time task frame
tracking, combined both, vision- and force-sensors, is used to
interact on the furniture and adapt the direction of the opening
force depending on the opening angle of the door.

Future work will concentrate on the extension of the pre-
sented work towards the recognition of different door handles
and the association of different grasps to them. Furthermore,
we will investigate the integration of the tactile sensor infor-
mation provided by the hand in this framework.
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