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Comparing Machine Learning Methods for Force Myography Based
Estimation of Isokinetic Knee and Ankle Torques
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Abstract— Wearable sensors enable accurate estimation of
joint moments through easy-to-use myography-based methods,
such as force myography (FMG), offering practical benefits
and valuable insights into continuous muscle state estimation
to enhance control strategies. This paper presents a comparative
analysis of four commonly used machine learning methods,
Gaussian process regression (GPR), support vector regression
(SVR), feed-forward neural network (FFNN), and temporal
convolutional network (TCN), for estimation of human knee
and ankle joint torques based on joint angles, velocities, and
FMG signals from eight muscles on the human leg. The
performance of the methods was evaluated on isokinetic motions
of ten participants and compared to the models enhanced by
electromyography (EMG) signals. Among the evaluated models,
neural networks consistently demonstrated the highest accuracy
in both inter- and intra-participant validations. Incorporating
FMG modality yielded comparable performance to EMG-
based estimation for unknown participants. Additionally, FMG
outperforms EMG-based estimation in novel task character-
istics within a single participant. These findings demonstrate
the potential of FMG as a viable alternative to EMG for
human joint torque estimation and highlight its potential for
personalized exoskeleton control.

I. INTRODUCTION

Accurate estimation of human joint moments using wear-
able sensors provides valuable insights for exoskeleton con-
trol during real-world activities [1]. Various sensors and
approaches can estimate joint torque, typically by usage of
data-driven methods or neuromusculoskeletal (NMS) models.
Joint angle encoders and inertial measurement units (IMUs)
provide insights into movement kinematics and are often
combined with additional sensors like instrumented insoles
measuring ground reaction forces (GRFs) to estimate human
joint torques [2]–[4]. However, there is an increasing interest
in integrating muscle-level biomechanics to enable a more ef-
fective human-exoskeleton interaction. This integration may
personalize control mechanisms and eliminate the need for
manual adjustments of control parameters for each user [3].
Additionally, it may reduce the mental load of exoskeleton
users during its operation [5].

Myography-based methods have emerged as a promising
approach for extracting information about continuous muscle
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states for exoskeleton control [3], [6]. When muscles are ac-
tivated, the muscle fibers are electrically stimulated, leading
to muscle contraction and changes in the muscle’s shape.
Electromyography (EMG) is a widely recognized method for
capturing the electrical signals of muscle activity [7]–[11].
However, obtaining high-quality EMG signals requires exten-
sive filtering and signal post-processing. Several factors neg-
atively impact signal quality, including electrode positioning
on the muscle, skin contact quality with the electrode, and
electrode displacement during muscle contractions [12]. In
contrast, force myography (FMG) measures the mechanical
phenomena associated with muscle contraction by detecting
the normal forces resulting from changes in muscle volume
shape, rather than electrical activity. This means that FMG
does not require direct skin contact, precise sensor placement
on the muscle, or complex post-processing [13]–[15].

Previous research has extensively explored using data-
driven models to estimate joint torque from EMG sig-
nals [16]–[20]. Research shows that various data-driven
methods can effectively estimate isometric joint torque [10].
Multiple models such as Gaussian process regression
(GPR) [21], support vector regression (SVR) [22], [23], long
short-term memory (LSTM) [21], artificial neural network
(ANN) [24] and convolutional neural network (CNN) [25],
[26], as well as temporal convolutional network (TCN) [1],
[27] demonstrated successful estimation of human joint
torques by combining kinematic information with EMG-
based muscular information. Previous comparative studies
have shown that CNNs outperform NMSs models [25] and
LSTMs [26] in EMG-based lower limb joint torque estima-
tion. However, EMG signals exhibit variability over days,

Fig. 1: Overview of the training and validation of the four
torque estimation models.
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impacting accuracy [10], [25], [28]. FMG-based attempts
have primarily focused on motion classification tasks [28]–
[30].

Although there have been only a few investigations
of FMG-based torque estimation, GPR has been previ-
ously introduced for lower limb joint torque estimation
and demonstrated that FMG outperforms EMG for single-
participant torque estimation but not in inter-participant
performance [31].

This paper presents a comparative analysis of four com-
monly used machine learning methods to estimate human
knee and ankle joint torques using FMG signals, along with
joint angle and velocity data. We compare the performance
of these existing models using a data set including ten
participants performing isokinetic knee and ankle joint mo-
tions. Additionally, we assess the same four models with
EMG signals replacing the FMG signals for comparison. By
examining these models, we aim to deepen our understanding
of the potential of FMG-based joint torque estimation and
its applicability in various approaches toward achieving
continuous control using FMG. The insights gained from
this analysis not only enhance existing knowledge about
FMG and EMG but also set the stage for future research to
optimize exoskeleton performance through tailored control
mechanisms.

The paper is organized as follows. Section II describes
the models and the training and validation methods. The
quality of the torque estimation and its validation results
are presented in Section III and discussed in Section IV.
Section V concludes the paper.

II. METHODS

Creating accurate biomechanical models of joint move-
ment and muscle activity is a complex task [3]. Data-driven
regression models offer a promising alternative. We compare
four estimation models to learn the relationship between
joint angle, joint velocity, and muscle activity. This section
outlines each model and the data and methods used for
training and validation.

A. Gaussian Process Regression

GPR models are a probabilistic and parametric supervised
learning method based on a Gaussian distribution [32].
Mathematically, this can be expressed by

f (x)∼ GP(m(x),k(x,x′)), (1)

where an observed outcome f (x) is estimated from an input x
by a Gaussian process with the mean function m and the
covariance function k(x,x′). Here, a radial basis function
(RBF)

k(x,x′) = σ
2 exp(−|x−x′|2

2l2 ), (2)

with the hyperparameters length scale l and error variance
σ2, was chosen as a covariance function. The mean func-
tion is initially set to zero. These hyperparameters and the
mean function are optimized, maximizing the log marginal
likelihood and minimizing the validation loss. Similar to

[31], a sparse gaussian process regression (SGPR) was used
to train the model due to the computational complexity of
O(n3), as well as the storage complexity of O(n2) in a
traditional GPR. SGPR is a modification of GPR, which
uses a subset consisting of k training datapoints as inducing
points to reduce the computational complexity to O(nk2) and
the storage complexity to O(k2). It was implemented using
Python’s gpflow library [33].

B. Support Vector Regression

As a supervised learning method, SVR estimates a contin-
uous multivariate function and trains it using a loss function
that equally penalizes both over- and underestimations [34].
It is formulated as an optimization problem attempting to
minimize a convex ε-insensitive loss function, while min-
imizing the estimation error. The true output f (x) can be
approximated by

f (x)∼
N

∑
i=1

(a∗i −ai)k(x,x′) (3)

with the input x, the Lagrange multipliers a∗i , ai and the
kernel k(x,x′). Similar to the GPR model, a RBF-kernel

k(x,x′) = exp(−γ|x−x′|2) (4)

with the free parameter γ was chosen. The threshold ε was
set to 0.1. To optimize the parameters, the corresponding
loss function is minimized based on the Karush-Kuhn-Tucker
conditions. Due to the computational complexity of SVR,
a subset of the total training data was used to train the
model. The implementation was based on Python’s scikit-
learn library [35].

C. Feed Forward Neural Network

A straightforward approach to neural networks is the
feed-forward neural network (FFNN) (also known as ANN),
which consists of interconnected layers of artificial neurons
that resemble biological neurons in both shape and func-
tion [36]. For an input vector x and a single hidden layer
with seven neurons, W represents the matrix of the weights
connecting each input with each neuron of the layer:

f (x)∼ θ(Wx+b). (5)

The desired output f (x) is derived with a bias b from
each neuron. A rectified linear unit (ReLU) is chosen as
the activation function. The bias and the weights are opti-
mized via a backpropagation algorithm, minimizing the mean
squared error. The architecture was inspired by [28], and
implemented using Python’s tensorflow library [37].

D. Temporal Convolutional Network

While CNNs are a common deep learning method, often
used in vision tasks, TCNs extend the concept of convolu-
tions into sequence modeling and causal, dilated convolu-
tions to capture only past information, but also more long-
range dependencies more efficiently [38]. The proposed TCN
consists of three residual blocks, each containing two one-
dimensional convolution layers with 50 filters, a kernel size



of four, and dilation rates increasing across the residual
blocks as powers of two, followed by a weight normalization
and ReLU activation. The output layer consists of a convo-
lutional layer with a kernel size of one and a single filter.

The structure of the TCN was simplified from [1] and
implemented using Python’s tensorflow library [37].

E. Data Set

The data used for the estimation consists of unilateral data
of ten participants (m= 5 | f= 5, age 26.8±3.2 years, height
175.2±6.78 cm, weight 65.0±6.8 kg) performing isokinetic
sagittal knee and ankle joint motion (Fig. 2), acquired in a
previous study [39]. The data includes multiple swings at
four angular velocities (ankle: 30 ◦/s, 60 ◦/s, 90 ◦/s, 120 ◦/s |
knee: 60 ◦/s, 90 ◦/s, 120 ◦/s, 150 ◦/s) carried out on an IsoMed
2000 device, which ensures a constant angular joint velocity
by dynamically adjusting the resistance throughout the range
of motion, resulting in variable joint torque. This provides
a controlled experimental environment with minimal distur-
bances or external forces acting on the sensors during the
motion while allowing for on-axis measurement of the joint
angle and the true joint torque.

Fig. 2: Overview of the data acquisition process.

Muscle activity data from eight FMG units (design de-
scribed in [15]) and EMG electrode pairs measuring activity
of the rectus femoris (RF), biceps femoris (BF), semitendi-
nosus (ST), vastus medialis (VM), vastus lateralis (VL),
gastrocnemius medialis (GM), gastrocnemius lateralis (GL)
and tibialis anterior (TA).

Post-processing of the data included filtering and down-
sampling of the joint angle, joint torque, and EMG signals,
which were originally sampled at 2000 Hz. The EMG signals
were band-pass filtered between 20 Hz to 500 Hz, rectified
and afterwards low-pass filtered at 6 Hz. Both filters applied
were fourth-order bi-directional Butterworth filters to achieve
zero phase distortion. Both joint angle and torque were
filtered using a second-order bi-directional Butterworth filter
with a cutoff frequency of 200 Hz to minimize the impact
of noise on the training of the models. The angular joint
velocity was derived from the joint angle. A second-order
Butterworth filter with a cutoff frequency of 20 Hz was

applied bi-directionally to the raw joint angle signal before
calculating the gradient.

To calibrate the FMG signal, the baseline offset was
removed using the mean values obtained from calibration
measurements in a relaxed standing position. No filter was
applied to the FMG signal. As the FMG sensor units allow
a maximum sampling rate of 200 Hz, the joint angle, joint
torque, and EMG signals were down-sampled and linearly
interpolated to an equidistant number of data points to align
and concatenate all data.

Each signal was z-score normalized per participant for a
better comparison between the input configurations, and the
estimated joint torque was later denormalized to its original
scale.

F. Training and Validation

The models were trained on two distinct input configura-
tions, one including FMG and the other including EMG.

x =

{
(θJ ,ωJ ,MEMG)

T EMG

(θJ ,ωJ ,MFMG)
T FMG

(6)

where θJ represents the joint angle, ωJ the joint angular
velocity, and M the muscle signals.

For each joint, the muscle signal M included the primary
muscles responsible for moving that joint [40] (Fig. 2):

M =

{
(MTA,MGM,MGL) ankle joint

(MBF,MRF,MST,MVM,MVL) knee joint
(7)

However, the effects of biarticular muscles, which influence
movements of multiple joints simultaneously, have not been
considered.

The estimation results were evaluated using an inter-
participant leave-one-participant-out (LOPO) and an intra-
participant leave-one-velocity-out (LOVO) cross-validation
to assess the model performance and its generalization
and personalization capabilities, respectively. The standard
deviation of the model estimation was evaluated using the
normalized root-mean-squared error (NRMSE):

NRMSE =

√
1
n

n

∑
i=1

(
τi − τ̃i

τmax − τmin
)2 (8)

where n is the number of available data points, τ is the vector
of true torque, τ̃ is the vector of the estimated torque and
τmax and τmin are the maximum and minimum true torque
of each participant, respectively. A lower value of NRMSE
implies a higher accuracy of each model. The variability of
the model estimation was evaluated using the coefficient of
determination (R2), where a value closer to 1 implies a higher
accuracy of each model.

To avoid overfitting, early stopping was used in the GPR,
FFNN, and TCN, with a patience of 50 epochs. This method
tracked the validation loss based on the last 20 % of the
training data for each participant included in the training
data, to avoid possible side effects of random sampling, and
restored the best model if no improvement was observed
over these 50 epochs. The SVR does not support callbacks in



its implementation; thus, early stopping was not considered.
To improve the training process, a batch size of 32 along
with an Adaptive Moment Estimation (Adam) optimizer was
employed with a learning rate of 0.001 for the FFNN and
0.0001 for the TCN. To accommodate the amount of training
data in a SGPR, the initial inducing points were selected
randomly as a subset of 0.25 % of the training data for
LOPO and 2.5 % for LOVO. To reduce the computational
complexity of the SVR for LOPO, the first 12 % of the data
for each velocity of each relevant participant was taken as
training data, while in LOVO the complete training data set
was used.

III. RESULTS

Four previously presented torque estimation models were
evaluated using LOPO and LOVO cross-validation to gain
insight into their respective performance. The NRMSE for
these validation methods are presented in Fig. 3 and Fig. 4 for
both ankle and knee joint. The results of the LOPO validation
are quantified in Table I as the mean and standard deviation
of NRMSE over the ten testing participants.

In the LOPO validation, shown in Fig. 3 and Table I,
the FFNN and TCN are among the best-performing models
across both joints, both when using FMG and when using
EMG signals. It can also be observed that SVR generally
shows the worst performance in LOPO validation, while
GPR falls in line with FFNN and TCN in most cases. In
addition, the figure shows that the estimation errors based on
FMG and EMG do not deviate significantly from each other
in most cases. The FFNN and TCN tend to perform slightly
better when using FMG, while showing less consistent error
values compared to when using EMG.

TABLE I: Inter-participant validation (LOPO)

NRMSE (%) GPR SVR FFNN TCN

ankle
EMG 8.26±1.6 10.85±1.9 8.03±1.6 7.82±1.5

FMG 8.22±2.8 11.22±5.2 7.66±2.1 7.64±2.6

knee
EMG 7.99±1.2 9.02±1.5 7.34±1.0 7.76±1.4

FMG 7.51±1.5 9.45±3.6 7.29±2.4 7.74±2.5

R2 GPR SVR FFNN TCN

ankle
EMG 0.90± .04 0.84± .05 0.91± .03 0.91± .03

FMG 0.91± .05 0.81± .16 0.92± .05 0.92± .05

knee
EMG 0.91± .03 0.88± .03 0.92± .03 0.91± .04

FMG 0.92± .03 0.86± .13 0.92± .06 0.91± .06
Values represent the mean and standard deviation.

The validation of LOVO, shown in Fig. 4 and Table II,
shows similar results, with FFNN and TCN generally outper-
forming GPR and SVR in both joints and signal types. Here,
it is also apparent that for the LOVO validation, the FMG
based estimation outperforms the EMG based estimation in
all cases, both in terms of the mean accuracy between speeds
and in terms of the standard deviation of error values.

To address possible online implementation of the models
in an exoskeleton, the inference time of each model was
tested on a personal computer, running an Ubuntu 24 oper-
ating system, with an Intel® Core™ Ultra 7 155H processor
and 16 GiB of DDR5 RAM operating at 5600 MT/s. Hereby,
the neural networks (NNs) exhibited similar inference times
for both the LOVO and LOPO methods. While the FFNN
was the fastest, with an average inference time of about
0.25 ms, the TCN was slower at around 1.4 ms. The SVR
showed more variability, with inference times of 0.36 ms for
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Fig. 3: NRMSE of the LOPO cross-validation of all four models, GPR (green, left), SVR (blue, middle-left), FFNN (orange,
middle-right), and TCN (yellow, right) of both the ankle (top) and knee (bottom) joint using (a) FMG and (b) EMG signals
as input. The x-axis represents each test participant left out of the training data set.
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Fig. 4: NRMSE of the LOVO cross-validation of all four models, GPR (green, left), SVR (blue, middle-left), FFNN (orange,
middle-right), and TCN (yellow, right) of both the ankle (top) and knee (bottom) joint using (a) FMG and (b) EMG signals
as input. The mean and standard deviation show the distribution over all four test velocities within each participant left out
of the training data set.

LOVO and 0.63 ms for LOPO application. The GPR had the
longest inference times, taking approximately 25 s for both
validations.

TABLE II: Intra-participant validation (LOVO)

NRMSE (%) GPR SVR FFNN TCN

ankle
EMG 14.67±9.4 14.76±8.6 11.33±6.8 12.50±7.8

FMG 9.23±5.7 9.14±5.1 7.72±4.0 8.48±5.5

knee
EMG 16.89±9.8 14.67±6.9 13.03±7.2 14.58±7.8

FMG 10.73±5.6 9.64±6.0 9.39±5.2 10.07±6.0

R2 GPR SVR FFNN TCN

ankle
EMG 0.77± .21 0.77± .21 0.88± .09 0.85± .12

FMG 0.91± .09 0.92± .10 0.94± .06 0.93± .08

knee
EMG 0.83± .18 0.88± .09 0.92± .07 0.89± .08

FMG 0.93± .07 0.95± .06 0.95± .06 0.95± .06
Values represent the mean and standard deviation.

IV. DISCUSSION

Among the four methods evaluated, the LOPO validation
indicated that both NNs are better suited to generalize to
new users when utilizing FMG and EMG. In most cases,
GPR and SVR performed worse. However, there appear to
be minimal differences in performance among the GPR,
FFNN, and TCN. Multiple training and testing sessions
using LOPO revealed variability in the performance of the
GPR across different runs. This inconsistency may stem
from the sparsification process that relies on a very small
random subset of the training data as inducing points. The
SVR, which was also trained on a fixed, but larger, set of

12 % of the data (approximately two swings per velocity
and participant), exhibited notably poorer performance. The
variability in the NRMSE values shown in the FMG-based
estimates suggests that electrical activation tends to be more
consistent among individuals than the volumetric changes
that occur during muscle contraction.

While [31] found that an FMG and EMG-enhanced GPR
model performs better for unknown task characteristics
within a participant compared to unknown participants, our
results suggest the opposite, regardless of the model used.
The FMG-based models show only slightly higher NRMSEs
in intra-participant performance compared to inter-participant
performance. In contrast, the EMG-based model performs
notably worse within a subject, leading us to conclude
that the intra-participant variability of EMG is greater than
that of FMG. According to [39], FMG demonstrates more
consistency in peak amplitude within a single participant and
across multiple participants than EMG. However, the full
width at half maximum (FWHM) of the signal in relation to
joint angle varies more across various participants in FMG
than in EMG. These findings suggest that the model focuses
more on the signal’s peak amplitude rather than the range of
joint angles in which the muscle is active.

Previous studies on EMG-based joint torque estimation
during isokinetic lower limb movements have reported
NRMSE ranging from 7 % to 30 %, depending on the joint
and modeling approach. Chandrapal et al. [19] demonstrated
that a multi-layer perceptron (MLP) could estimate knee
flexion and extension torques using EMG signals alone,
with NRMSEs between 20 % to 30 %. Su et al. [23] em-
ployed a time delay artificial neural network (TDNN) to



estimate ankle inversion and eversion torques using EMG
and joint angle data, achieving an NRMSE of 7.9±0.03%,
outperforming SVR (9.1±0.04%) and ANN (9.8±0.05%).
Schulte et al. [25] used a convolutional neural network
(CNN) to estimate knee torques during non-weighted flexion
and extension, reporting an NRMSE of 9.2 ± 4.4% using
EMG. These models were typically trained on 60 % to
80 % of the dataset randomly pooled across participants,
potentially leading to better overall performance than what
could be expected with unknown participants or varying joint
velocities. All four models in this work achieved higher
accuracy for previously unseen participants (Table I) than
those aforementioned values in the literature, independent of
the input muscle activity signal. However, intra-participant
variability was greater in the EMG-based models compared
to FMG-based models and prior studies, underlining the
potential of FMG as an alternative to EMG.

An evaluation of the inference times revealed that FFNN,
TCN, and SVR have suitable durations for use in online
applications. Assuming there are no additional time require-
ments in the control system, an inference time of up to
5 ms is acceptable due to the sampling frequency of 200 Hz
for the FMG units [15]. Under strict time constraints, the
FFNN may be the most appropriate method. In contrast, the
inference time of the GPR would impose severe limits on
the control bandwidth, combined with its requirements for
storage and computational power, making it impractical in
its current form.

According to [27] EMG improves model performance
more in non-cyclic than in cyclic real-life tasks. The lim-
ited set of isokinetic movements considered in this study,
which included only flexion and extension, may thus have
influenced the results. Consequently, the findings should be
validated using an expanded dataset incorporating cyclic and
non-cyclic real-life tasks.

Additionally, the performance of NNs may have been
affected by the small amount of data utilized in this work,
as NNs typically benefit from a larger volume of training
data [41]. Therefore, it would be advantageous to enhance
the dataset by including more motions, participants, and
repetitions.

The findings in this work are based solely on normalized
and filtered data, which is not directly applicable for online
exoskeleton control. To effectively apply a data-driven model
for online exoskeleton control, further investigation is needed
to evaluate the model’s performance using non-normalized
data for its estimations and using filters better applicable for
online applications.

While FMG shows great promise as an alternative to EMG
in isokinetic knee and ankle joint motion, future research
provides an opportunity to expand the dataset and incorporate
real-life tasks. These efforts will undoubtedly optimize model
performance and pave the way for innovative, practical
exoskeleton control applications.

V. CONCLUSION

The presented comparative analysis demonstrates that
FMG serves as an effective alternative to EMG for knee and
ankle joint torque estimation, with neural network models
achieving particularly high accuracy and fast inference times
suitable for real-time applications.

Furthermore, the ability of FMG to perform comparably
to or even better than EMG in inter- and intra-participant
settings highlights its potential for enhancing exoskeleton
control and personalizing musculoskeletal interactions. These
insights will inform the design and control of exoskeletons
and ultimately lead to improved human-exoskeleton interac-
tion.
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