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Abstract— Despite the recent progress on 6D object pose
estimation methods for robotic grasping, a substantial perfor-
mance gap persists between the capabilities of these meth-
ods on existing datasets and their efficacy in real-world
grasping and mobile manipulation tasks, particularly when
robots rely solely on their monocular egocentric field of view
(FOV). Existing real-world datasets primarily focus on table-
top grasping scenarios, where a robot arm is placed in a
fixed position and the objects are centralized within the FOV
of fixed external camera(s). Assessing performance on such
datasets may not accurately reflect the challenges encountered
in everyday grasping and mobile manipulation tasks within
kitchen environments such as retrieving objects from higher
shelves, sinks, dishwashers, ovens, refrigerators, or microwaves.
To address this gap, we present KITchen, a novel benchmark
designed specifically for estimating the 6D poses of objects
located in diverse positions within kitchen settings. For this
purpose, we recorded a comprehensive dataset comprising
around 205k real-world RGBD images for 111 kitchen objects
captured in two distinct kitchens, utilizing a humanoid robot
with its egocentric perspectives. Subsequently, we developed a
semi-automated annotation pipeline, to streamline the labeling
process of such datasets, resulting in the generation of 2D
object labels, 2D object segmentation masks, and 6D object
poses with minimal human effort. The benchmark, the dataset,
and the annotation pipeline are publicly available at https:
//kitchen-dataset.github.io/KITchen.

I. INTRODUCTION

Recent work in robot navigation in indoor environments
shows remarkable advances for mobile robots to navigate
towards a goal position following different modalities such
as 2D points [1], [2], object’s image [3], [4], language
instruction [5], [6], and acoustic signals [7], [8]. However,
expanding the capabilities of these robots beyond navigation
to perform tasks that require physical interaction with the
surrounding objects in the environments remains a harder
challenge. Therefore, understanding the 3D surroundings and
objects’ 6D pose estimation are essential pre-tasks for any
robotic grasping and manipulation task [9], [10], [11].

Current advances in tackling the 6D pose estimation prob-
lem focus on developing new models and approaches [12],
[13] to achieve the best results on the BOP challenge1

datasets [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23]. While this paradigm boosted the research on 6D
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Fig. 1. Challenging kitchen locations that our dataset covers in contrast
with the currently available datasets. The objects are distributed across
diverse locations such as fridge, drawer, sink, higher shelves, microwave,
dishwasher, oven, etc.

pose estimation, however, the available real-world datasets
primarily focus on serving the table-top robotic grasping
setup, featuring a robotic arm fixed in a position above
objects, close to them, and often the objects are centered
within the robot’s FOV and in some cases with multiple
cameras setup [24].

These datasets do not cover the challenging scenarios
that mobile manipulators face inside indoor environments,
especially in kitchens, where objects are normally placed in
different not-centered positions with respect to the robot’s
field of view (FOV) such as on higher shelves, inside
fridges, microwaves, dishwashers or ovens or in sinks. These
locations not only impose challenging 6D poses with re-
spect to the robot’s camera but also cover more diverse
and challenging surroundings such as transparent shelves
in the case of refrigerators, see-through shelves in the case
of dishwashers, and reflective backgrounds in the case of
sinks, these challenges are not covered in the currently
available real-world datasets [24]. These gaps and the not-
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covered scenarios do not provide a reliable indication of the
performance of the developed methods on these real-world
datasets in the context of mobile manipulation tasks with
monocular egocentric FOV.

In addition to that, the current top 10 models on the BOP
leaderboard train a model for each dataset [25], or even for
each object [12], [26], which makes it hard to use for robotic
applications, where the robots have to deal with a large
number of objects under constrained resources. Furthermore,
the average inference time of these top 10 approaches
is 0.0283 frames per second (fps) with the best being
4.386fps. This makes these approaches not reliable for real-
time applications, such as mobile manipulation where the 6D
pose estimate is only a preliminary step of object grasping
which is followed by a set of actions needed to execute
the grasp such as grasp selection, motion planning, etc. To

Fig. 2. The humanoid robot ARMAR-6, leveraged for its adjustable torso
height and various camera angles provided by its adjustable roll-yaw neck,
to enrich our dataset.

overcome the limitations of the current 6D pose estimation
methods, we introduce KITchen, the first-of-its-kind large-
scale real-world dataset recorded using the humanoid robot
ARMAR-6 [27] as shown in Fig. 2, which has adjustable
height and roll-yaw neck, in 2 different kitchen environments
covering 111 kitchen objects from the robots’ egocentric
perspective to cover the objects in the challenging kitchens’
locations as shown in Fig. 1. KITchen offers 2D bounding
boxes, object segmentation, and 6D poses annotated with a
semi-automated annotation pipeline to minimize the need for
manual labeling.

The main contributions of our work are: (i) we introduce
a large real-world annotated RGBD dataset for 111 objects
with their 2D bounding boxes, segmentation masks, and 6D
poses. (ii) we propose a semi-automated annotation pipeline
to annotate the objects in the dataset to facilitate the creation

of more real-world datasets and make it publicly available to
other researchers to create such large-scale datasets. (iii) we
introduce a new benchmark and competition, where the
focus is to solve the object 6D pose estimation problem
depending solely on the monocular FOV of robots and
limiting the submissions to approaches that offer at least
5fps to encourage further work on this problem while taking
into consideration real-time applicability.

II. RELATED WORK

A. Objects Datasets

Current research on 6D pose estimation leverages several
datasets categorized into two main groups: instance-level
object datasets and category-level object datasets. Instance-
level datasets offer 6D pose annotations for specific objects,
serving as benchmarks for many object pose estimation
methods. In contrast, category-level datasets aim to extend
object pose estimation approaches to estimate the pose of
different instances within the same category. In this work,
we focus on instance-level object pose estimation. This
subsection provides an overview of currently available real-
world datasets for instance-level 6D object pose estimation.

LineMOD (LM) [14] comprises 15 texture-less objects
with diverse shapes, colors, and sizes. LM provides ap-
proximately 1.2K real-world test images for each object in
cluttered scenes, totaling 18241 images. LineMOD-Occluded
(LMO) [15] offers pose annotations for only eight objects
from the LineMOD dataset under severe occluded conditions.
T-LESS [16] consists of 30 industrial texture-less, symmetric,
and similar objects with 1296 real-world images per object,
totaling around 39K images. ITODD [17] provides 6D pose
annotations for 28 industrial objects with less than 1K pub-
licly available Gray-Depth validation images. Homebrewed-
Database (HB) [18] comprises less than 5K real-world
images as validation set for 33 objects, with only 8 of them
being household objects. HOPE [19] consists of 28 toy gro-
cery objects that could be utilized in kitchen environments,
but it provides only 238 real-world images in 50 scenes. IC-
BIN [21] also offers only 177 real-world test images for only
3 out of its 8 objects in multi-objects cluttered scenes with
heavy occlusion to be used for the BOP challenge. TUD-
L [23] provides around 11K real-world images for 3 objects
not placed on tables which differs this dataset from the
others. MP6D [28] consists of 20.1K real-world frames for
20 symmetrical specular-reflective objects in cluttered multi-
object setups with occlusion. ClearPose [29] offers about
355K real images for 63 transparent symmetrical objects in
51 cluttered scenes with diverse backgrounds and occlusion.
YCB-video (YCB-V) [20] provides 134K real-world images
for 21 objects from the original YCB dataset [30].

GraspNet-1Billion [31] contains around 97.3K RGBD
images for 88 objects recorded with 2 different cameras for
table-top grasping scenario with one robot arm. KIT object
models database [32] was originally introduced in 2012 and
offers 3D CAD models for more than 100 diverse objects,
the majority of which are kitchen-related groceries. However,
it only offers very few images for each object, which makes



Dataset Objects Images Annotated Objects/Image Multi-object Multi-instance Mobile Robot’s FOV

LineMOD/LineMOD-Occluded [14], [15] 15 18.2K ≤ 8 ✓ ✗ ✗
T-LESS [16] 30 39K ≤ 10 ✓ ✓ ✗
ITODD [17] 28 1K ≤ 8 ✓ ✓ ✗
Homebrewed-Database [18] 33 5K ≤ 8 ✓ ✗ ✗
HOPE [19] 28 238 5-20 ✓ ✓ ✗
ICBIN [21] 3 177 ≤ 3 ✓ ✓ ✗
TUD-L [23] 3 11K 1 ✗ ✗ ✗
MP6D [28] 20 20.1K ≤ 8 ✓ ✗ ✗
ClearPose [29] 63 355K ≤ 10 ✓ ✗ ✗
YCB-video (YCB-V) [20], [30] 21 134K 5 ✓ ✗ ✗
GraspNet-1Billion [31] 88 97.3K 10 ✓ ✗ ✗
KITchen (ours) 111 205K 10-50 ✓ ✓ ✓

TABLE I
OVERVIEW OF AVAILABLE DATASETS FOR INSTANCE-LEVEL 6D POSE ESTIMATION

it hard to use this dataset for 6D pose estimation with the
current state-of-the-art (SOTA) data-driven 6D pose estima-
tion approaches. KIT bimanual manipulation dataset [33]
provides rich data for learning models of bimanual manipu-
lation tasks from human demonstrations. It includes accurate
whole-body motion data, hand configurations, and 6D object
poses captured using various sensors. The dataset features 12
bimanual actions for 21 kitchen-related objects.

An overview of available datasets for instance-level 6D
pose estimation is given in Table I. The overview highlights
key metrics including the number of covered objects in
the dataset, total image count, number of annotated objects
per image, presence of multi-object setups, availability of
multiple instances of the same objects, and whether the
dataset was captured using a mobile robot’s field of view.

In this work, we carefully selected 111 kitchen-related
objects from the YCB, KIT object dataset, and the KIT
bimanual manipulation dataset to record the first-of-its-kind
large-scale real-world RGBD dataset featuring multi-objects
in structured cluttered setups with diverse backgrounds and
lighting conditions recorded using a humanoid robot.

B. 6D Pose Estimation Methods

The current landscape of 6D pose estimation methods is
diverse, ranging from traditional techniques such as tem-
plate matching [34], [35], [36], [37] and correspondences
with locally invariant features [38], [39], [40] to the cur-
rent advanced deep learning SOTA render & compare ap-
proaches [13], [41]. These approaches provide the 6D poses
of novel objects by rendering many views of the object
during inference using its 3D CAD model and then passing
these rendered views with the received cropped image of the
object obtained by any 2D object detectors [42], [43], [44],
[45], [46] to a coarse model which classifies which rendered
image best matches the input image. Finally, they pass the
initial pose to a refiner network to estimate an updated 6D
pose of the object. In this work, we leverage MegaPose [13],
Segment Anything [47], and YOLOv8 [48] to annotate our
dataset.

III. THE KITCHEN DATASET

A. Dataset’s Objects

We aim to create a large-scale real-world dataset that
covers objects that are commonly used in kitchen environ-
ments. Although some of the existing object datasets already
offer objects that are commonly used in kitchens, they lack
enough diverse RGBD annotated images to train on [20] or
no annotated RGBD at all [30], [33], [32], [49]. Therefore,
we decided to reuse the already available kitchen-related
objects from these datasets and provide a large real-world
RGBD annotated dataset for them to facilitate research on
6D pose estimation for kitchen objects. These objects vary
from toy vegetables and fruits from [30] to kitchen tools
such as knives, spoons, cups, mugs, bowls, cutting board,
egg whisk, frying pan, plate, etc. from [30], [20], [33], [32],
[49] to kitchen groceries objects from [30], [32].

B. Dataset Recording

We recorded the dataset using our humanoid robot
ARMAR-6 [50] inside two distinct kitchen environments
as seen in Fig. 3 the first kitchen, referred to as the Main
Kitchen, includes typical kitchen appliances such as a fridge,
counter with drawers, table, sink, microwave, dishwasher,
and oven. The second kitchen, named Mobile Kitchen,
features a counter with drawers, sink, dishwasher, fridge,
and three tables. To enhance diversity, we utilized four
different table-top colors (red, white, gray, and blue) and
varied the camera’s heights (150cm, 177cm, and 185cm)
using ARMAR-6’s torso as shown in Fig. 4. Additionally, we
recorded data under three different pitch angles (10 degrees,
37 degrees, and 49 degrees down) and six different lighting
conditions as shown in Fig. 5. We shuffled the objects with
each change of lighting, camera’s height, or camera’s angle to
enrich the diversity of the recorded scenes. To avoid similar
and repetitive frames, we limited our recording to 5 fps. To
the best of our knowledge, this is the first of its kind dataset
that covers this amount of different robots’ fields of view.

C. Annotation Pipeline

Annotating objects with their ground truth 6D poses is a
labor-intensive and time-consuming task. Although some of



Fig. 3. The two distinguished kitchens where we recorded our dataset. On the left side is the Main Kitchen while on the right side is the Mobile Kitchen.

Fig. 4. Diverse robot and camera heights realized through different torso positions of ARMAR-6. The images display heights of 145cm, 177cm, and
185cm from left to right, illustrating the varied perspectives captured in the datasets and the different placements of objects relative to the robot’s field of
view.

Fig. 5. Variation in robot neck pitch angle. The images depict angles of 10, 37, and 49 degrees from left to right, showcasing a diverse range of
perspectives.

the recently published datasets attempted to semi-automate
the annotation process. For instance, GraspNet-1Billion’s
approach [31] relies on manually annotating the first frame
of each scene, then leveraging recorded camera poses to cal-
culate the objects’ poses in the following frames. However,
this method was not optimal for our dataset, as KITchen
has many more diverse scenes per kitchen compared to
the simple setup used in GraspNet-1Billion, resulting in
significantly more effort required for manual annotation.
Another attempt to semi-automate the annotation process was
presented by HANDAL [51], but their approach assumes
a single object in the scene, making it unsuitable for our
dataset, which contains 10 − 50 objects in each scene. To
overcome the limitations of existing approaches and stream-
line the annotation process, we propose a semi-automated
annotation pipeline. This pipeline generates three types of
annotations: 2D object bounding boxes, 2D segmentation
masks, and 6D poses, see Fig. 6.

1) 2D Objects Bounding Boxes Annotation: The pipeline
starts by receiving the collected 3D CAD object models for
the dataset, then it generates around 100K annotated photo-
realistic synthetic RGBD images with 2D bounding boxes
using BlenderProc2 [52]. These synthetic images are used
to finetune a pretrained YOLOv8 model [48] for 2D object
detection. Subsequently, the trained model is applied to our
real-world data, and manually classified images are inspected
to distinguish correctly labeled ones. The model is then fine-
tuned iteratively until all real-world data is accurately labeled
with 2D object labels.

2) 2D Objects Segmentation Masks: For segmenting the
objects and producing the 2D segmentation masks, we lever-
age Segment Anything [47], by passing the images as well
as the 2D bounding boxes generated from the previous step.

3) 6D Object Poses: To generate the 6D poses for the
objects in the images, we pass the 2D bounding boxes which
are generated using the fine-tuned YOLOv8 object detection



Fig. 6. Our proposed annotation pipeline. The pipeline starts with 3D meshes of dataset objects as input, which are processed by BlenderProc2 to generate
synthetic data with 2D bounding boxes. This annotated 2D data is used to train a YOLOv8 2D object detector. Subsequently, real-world recorded data
is fed into the trained model, and the output is manually inspected for correct and incorrect labeling. The correctly labeled images are used for model
refinement, which is then validated on the incorrectly labeled images. This iterative process continues until all images are correctly labeled. The correctly
labeled images are then passed to Segment Anything (SAM) to generate masks. Finally, the images, along with the 2D labels and 3D meshes, are fed
into MegaPose to generate 6D poses for detected objects. Manual inspection of poses is performed using contour and mesh overlay images, and corrected
annotations are used to iteratively fine-tune MegaPose until the entire dataset is accurately annotated.

model alongside the 3D CAD models of the detected objects
with the input image into MegaPose [13]. The output 6D
poses are used to overlay contours and meshes on the
images for manual inspection. The MegaPose model is fine-
tuned with corrected labeled data iteratively until all data
are accurately annotated. The entire annotation pipeline is
illustrated in Fig. 6 and several illustrative examples of the
output of each step are demonstrated in Fig. 7.

D. Comparison to Existing Datasets

When compared to currently available datasets, the
KITchen dataset stands out in several key aspects. With
a diverse collection of 111 objects, our dataset offers a
significantly wider range than the average number of objects
found in existing datasets, surpassing the average by a factor
of four. This expansive variety is crucial for training robust
pose estimation models capable of handling a multitude of
real-world scenarios. Moreover, the KITchen dataset offers
a total of 205K RGBD images. This surpasses the average
number of annotated images in existing datasets covered in
Table I by over threefold, providing more data for training
and evaluation purposes. Furthermore, our dataset has a
remarkably larger number of annotated objects per image
compared to the existing datasets with an unprecedented
number of objects reaching 50 per image. This exceeds
any available dataset by a significant margin, enabling more
comprehensive analysis and training of instance-level 6D
pose estimation models. Additionally, the KITchen dataset
is unique in its capture methodology. It is the only dataset
to have been recorded using the field of view of a humanoid
robot with adjustable heights, camera angles, and lighting
conditions. Unlike existing datasets that predominantly focus
on tabletop scenes, our dataset features challenging locations
within kitchen environments including refrigerators, ovens,
sinks, higher shelves, microwaves, and dishwashers, offering
a broader scope of real-world scenarios for pose estimation
research. An overview of the dataset comparison is given in
Table I.

IV. THE KITCHEN BENCHMARK

Our proposed KITchen benchmark aims to encourage
researchers in both computer vision and robotics to test their
developed methods on a diverse and challenging multi-object
dataset while considering the resource constraints of robots.
To this end, we impose specific guidelines for leaderboard
submissions to ensure practical applicability. Specifically,
submissions must utilize a single model for all objects and
maintain a minimum processing frequency of 5fps during
inference. The above conditions enhance the likelihood of
the applicability of these methods in robotics. Aligning these
criteria with those of the BOP Benchmark [53], we observe
remarkable differences. Among the top 10 methods on the
leaderboard, only two meet to the requirement of utilizing
a single model per dataset rather than per object. Moreover,
none of these methods achieves the required performance of
5 fps, with the closest reaching 4.3 fps. This discrepancy
underscores a critical gap between current state-of-the-art
approaches and the requirements of time-critical robotics
applications, as evidenced by the average processing speed
of the top 10 approaches on the BOP leaderboard, which is
only 0.03 fps.

A. Problem Statement

The benchmark is designed to address the object 6D pose
estimation problem, where the model receives an image I
from the dataset D, where D is a set of RGBD images.
The image I contains a set of objects {o}ni=0. The model
has access to the M , where M is a set of 3D meshes of
all objects O in the dataset D. The objective is to estimate
the pose P of all objects {o}ni=0 in each image I , where
P = [R, T ; 0, 1], where R is a 3 × 3 rotational matrix that
describes the rotation of each of detected objects {o}ni=0 to
the robot camera’s frame and T is the translation vector to
the origin of robot camera’s coordinate system.

B. Datasets

Our benchmark leverages the KITchen dataset introduced
in Sec. III. Notably, this dataset stands out as the first



Fig. 7. Examples of the results generated by our proposed annotation pipeline. Sequentially from left to right: output of the 2D detector, segmentation
masks, contour overlay, and mesh overlay.



of its kind, captured from the perspective of a humanoid
robot, and encompasses varying heights and pitch angles,
making it more suited to cover robotic mobile manipulation
scenarios in kitchen environments. We split the dataset to
training/validation/test sets with a 70/20/10 ratio.
Although our benchmark primarily focuses on the KITchen
dataset, we invite other robotics research groups to record
datasets in kitchen environments using their own robots
and leverage our proposed annotation pipeline in Sec. III-
C to annotate their data efficiently. Our vision for this
benchmark extends beyond our dataset alone, we see it
as a dynamic community platform where diverse research
groups can collectively work to advance the field of robotic
perception and pose estimation by testing their methods on a
variety of datasets and providing their own datasets for other
researchers to test on.

C. Pose Error Calculation

We utilize the same pose error function used by the BOP
challenge [53]. The estimated pose is considered correct if
the pose error function e calculated between the annotated
pose P and the estimated pose P̂ is lower than a prede-
fined threshold θe, where e ∈ {eV SD, eMSSD, eMSPD},
where eV SD is the Visible Surface Discrepancy error func-
tion which focuses on the visible part of the object and
evaluates poses with indistinguishable shapes as equivalent,
disregarding the color information, eMSSD is the Maxi-
mum Symmetry-Aware Surface Distance that calculates the
surface deviation between vertices in the 3D, calculating
the maximum distance between model vertices is crucial
to know the chance of a successful grasp, while eMSPD

is the Maximum Symmetry-Aware Projection Distance that
considers the object symmetries and calculate the difference
in X,Y axes which makes it suitable for methods that rely
on RGB data only. Finally, the Recall is defined as the ratio
of correctly estimated poses with a total pose error e lower
than the threshold θe across all objects. The Average Recall
is then computed by averaging these recall values across
various threshold settings.

V. CONCLUSION

We introduce KITchen, a novel object 6D pose estimation
benchmark tailored to tackle this task within challenging
kitchen environments using only monocular vision from
robots’ FOV, with a specific emphasis on real-time per-
formance. To serve this benchmark, we recorded a large-
scale real-world dataset, captured from different perspectives
of a humanoid robot, featuring multi-objects in structured
cluttered scenes in two distinct kitchen environments with
diverse lighting conditions. Lastly, we proposed a semi-
automated annotation pipeline aimed at streamlining the
annotation of such datasets while minimizing manual human
effort. We envision our benchmark to promote the develop-
ment of novel approaches to solve the 6D pose problem on
resource-constrained platforms, with an emphasis on real-
time and real-world applicability.
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