
Graph-based Task-specific Prediction Models for Interactions between
Deformable and Rigid Objects

Zehang Weng*1, Fabian Paus*2, Anastasiia Varava1, Hang Yin1, Tamim Asfour2 and Danica Kragic1

Abstract— Capturing scene dynamics and predicting the
future scene state is challenging but essential for robotic
manipulation tasks, especially when the scene contains both
rigid and deformable objects. In this work, we contribute
a simulation environment and generate a novel dataset for
task-specific manipulation, involving interactions between rigid
objects and a deformable bag. The dataset incorporates a
rich variety of scenarios including different object sizes, object
numbers and manipulation actions. We approach dynamics
learning by proposing an object-centric graph representation
and two modules which are Active Prediction Module (APM)
and Position Prediction Module (PPM) based on graph neural
networks with an encode-process-decode architecture. At the
inference stage, we build a two-stage model based on the
learned modules for single time step prediction. We combine
modules with different prediction horizons into a mixed-horizon
model which addresses long-term prediction. In an ablation
study, we show the benefits of the two-stage model for single
time step prediction and the effectiveness of the mixed-horizon
model for long-term prediction tasks. Supplementary mate-
rial is available at https://github.com/wengzehang/
deformable_rigid_interaction_prediction

I. INTRODUCTION

Predicting action effects is essential for robotic manipula-
tion. Models capturing task scenes are usually incorporated
in predictive control to achieve some specific manipulation
goals [1] or facilitating sensing in interactive perception.
While multiple works address rigid object manipulation,
modeling and predicting the scene dynamics of highly-
deformable objects such as cloth, which is essential for
many real-life tasks [2], [3], remains challenging. As a po-
tential solution, learning-based modeling [4] accommodates
unmodeled effects of physical simulators and is applicable
to various task representations. In this paper, we focus on
predicting the dynamics of interactions between both rigid
and cloth-like objects in a simulated environment. Building
learning-based predictive models for scenes is challenging
for several reasons. First, there is currently no publicly
available dataset containing complex interactions with highly
deformable objects. Second, generalization requires an ef-
fective model that captures scenes with internal and external
relations of a varying number of scene objects.

Recent works typically process simulation data of objects
with simple topologies, such as rope, simple fabric [5],
and scenes with limited objects and interactions, such as

*Authors with equal contribution.
1The authors are with CAS/RPL, KTH, Royal Institute of Technology,

Stocholm, Sweden. {zehang,varava,hyin,dani}@kth.se
2The authors are with the Institute for Anthropomatics and

Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany.
{paus,asfour}@kit.edu

Fig. 1. The mixed-horizon model consists of a short-term prediction model
M1, which can predict the next time step, and a long-term prediction model
M5, which can predict five time steps into the future. This figure shows the
scene state at different time steps and our sparse keypoint representation of
the scene state at these time steps.

cloth dropping [6]. Various graph-based approaches towards
dynamics learning have been proposed [4], [7], [8]. Typ-
ically, these works consider low-level physics of particles
and limited interactions between them, instead of a task-
level representation. We contribute a dataset for learning
action effects on scenes with both deformable and rigid
objects. To this end, we build a simulation environment
modeling the interaction between several rigid spheres and a
deformable bag with handles using Unity and the Obi Cloth
extension. We collect data for 20 different tasks including
four different actions with varying material and environment
settings. Depending on the task, we select a sparse set of
keypoints on the deformable object’s surface and represent
the scene state as a fully-connected graph. We learn task-
specific dynamics models based on two separated graph
modules for single time step predictions. Based on these
dynamics models, we propose a mixed-horizon model for
predicting the action effects over multiple time steps, which
combines single time step models with different prediction
horizons (see Fig. 1 for an example).

The proposed model can be used for various deformable
object manipulation tasks, such as arranging objects, opening
the bag, putting the objects into the bag, and deforming the
bag by pushing another object towards it. We evaluate the
proposed method on all 20 tasks in the dataset and show the

https://github.com/wengzehang/deformable_rigid_interaction_prediction
https://github.com/wengzehang/deformable_rigid_interaction_prediction


advantages of our model in single time step predictions as
well as in long-horizon prediction tasks. A video illustrating
the dataset and the proposed method is available1.

The main contributions of the paper are:
• We build a novel publicly available dataset2 for task-

specific action effect prediction by leveraging a de-
formable simulation engine. The scene contains inter-
actions between one cloth-like deformable object and
multiple rigid objects.

• We propose a method for predicting complex inter-
actions between deformable and rigid objects by rep-
resenting the scenes as graphs and building a two-
stage prediction model, which first classifies which parts
of the scene move at all and then applies position
updates selectively in a second stage. By combining
two-stage models with different prediction horizons, our
method outperforms baseline approaches with only one
prediction horizon.

The rest of the paper is organized as follows: in Section II,
we provide an overview of the related work. In Section
III, we describe the scene modeling and dataset generation.
Section IV presents our graph-based approach to dynamics
prediction. In Section V, we evaluate our approach. The
paper concludes in Section VI with a discussion of the
results.

II. RELATED WORK

A. Deformable Object Dynamics Modeling

In deformable object manipulation, there are two types
of methods for predicting complex object dynamics as a
result of an action. The first one is based on analytical
modeling, Hou et al. review different traditional methods
for cloth dynamics modeling [9]. One popular approach to
accurate modeling is applying the finite element method
(FEM), which mostly applies to fabrics of simple shapes for
real-time simulations [2]. Another approach is to construct
a particle-based simulation system based on the measured
mechanical properties (friction, mass, elasticity, bending,
etc.) by standardized measurement systems like Kawabata
Evaluation System” (KES) and ”Fabric Assurance by Simple
Testing System” (FAST) [10]. However, these methods are
computationally expensive, especially when the geometric
and topological structure is complex.

The second type of methods relies on learning the dy-
namics from data. Here, the dynamics are captured without
explicitly measuring and memorizing the object properties.
Recently, many research works addressed rope dynamics
modeling. Battaglia et al. investigate the power of graph-
based interaction networks and learn the dynamics of a
simulated rope environment [4]. Watters et al. use a front-end
network to encode the visual input as latent representations
and builds a dynamics estimator based on interaction network
structure [7]. Yan et al. takes images as input and uses a

1https://youtu.be/a4ILwCmai9k
2https://github.com/wengzehang/deformable_rigid_

interaction_prediction/blob/main/docs/dataset.md

neural network to encode the rope state as a set of connected
nodes, and apply a bi-directional LSTM to capture the
dynamics based on the node representations [11]. For 2D
cloth-like objects, a physically-based simulator and fully-
connected networks are combined to perform the simula-
tion [12] and [13] for coarse and fine levels respectively.
PlaNet [14] encodes the images by an Autoencoder as a latent
code and predicts the future latent representation based on
GRU structure. PlaNet is evaluated on SoftGym [6] cloth
manipulation dataset but fail to produce accurate estimation.

All these methods have their limitations in complex sce-
narios. First, most of these works are devoted solely to
modeling 1D linear objects like ropes or cables. When
2D cloth-like objects are considered, the authors implicitly
assume that their topology is simple. Second, the considered
actions are typically restricted to picking and placing. In
this work, we study the scene dynamics considering more
complicated deformable object and a rich set of actions.

B. Predicting Action Effects for Rigid Objects

Predicting action effects for rigid objects has been studied
more extensively than for deformable objects. Early works
predicted planar motions of a single object which was
represented with a binary segmentation mask [15], [16].
More recent works can handle a fixed number of objects
indirectly by predicting the perceived image after action
execution [17], [18]. Some image-based methods are limited
to a fixed number of objects due to their use of a constant
amount of image masks. Other methods do not use masks but
rather predict the complete image after action execution [19],
[20]. These methods are able to learn dynamics models
for non-planar object interactions. For instance, Zeng et al.
leverage depth information by including a height map in the
scene representation [21].

A new trend in action effect prediction employs graph
neural networks to learn system dynamics with the ability to
generalize to scenarios with a different number of objects [4].
Graph neural networks have been also used to predict the
motion of stacked block towers [22], the effects of pushing
into a scene of rigid objects [23], and of interacting with a
connected set of rigid objects [24].

C. Physical Simulations for Data Collection

Collecting data for training a predictive model on real
hardware is expensive. Simulated environments provide a
cheap alternative, but are challenging to set up for highly-
deformable objects. In this work, we rely on a simulated
environment created using the Unity engine.

Advanced wrap-up software is used for generating cloth-
like object animation, such as Blender, Maya, Unreal Engine,
and Unity. The first two are based on the Bullet engine [25]
and the other two are based on the PhysX/FleX engine [26].
All these engines use particle-based solvers. [27] compares
these popular physics engines.

The heavy simulation time cost and the unreality of syn-
thetic data increase the difficulty of cloth-like object research.
There are some works on utilizing real-time simulation

https://youtu.be/a4ILwCmai9k
https://github.com/wengzehang/deformable_rigid_interaction_prediction/blob/main/docs/dataset.md
https://github.com/wengzehang/deformable_rigid_interaction_prediction/blob/main/docs/dataset.md


environments for learning to manipulate deformable objects.
Regarding the deformable object benchmark, SoftGym [6]
creates a set of simulation environments with 1D cables
and 2D fabrics, based on the FleX engine, and tests the
standard reinforcement learning algorithms on their released
benchmark. However, SoftGym does not provide an interface
for 3D deformable cloth-like object data collection. Based on
the Bullet engine, DeformableRavens [5] creates 12 scenarios
with 1D cable, 2D fabric, and 3D bag manipulations, and
proposes a goal-conditioned variant of a Transporter Network
for action recommendations on different tasks. However,
the used bag is constructed from simple templates without
any hole structures on the body. The objects in the scenes
are manipulated with “pick” and “place” actions, while the
interactions between the bag and rigid objects are induced
by gravity. In our work, we design the bag templates with
handles to include multi-hole structures using Blender, and
build the simulation environment in Unity based on Obi
Cloth extension [28]. As mentioned in Section I, we pre-
program a moving sphere or the handle action trajectories
to generate rich interactions between different objects in the
scene.

III. TASK DESCRIPTION AND DATASET GENERATION

We generate a novel dataset for task-specific action ef-
fect prediction on scenes containing interactions between a
deformable bag and a set of rigid objects.

A. Task Description

We consider tasks like opening a bag, pushing an object
into a bag and moving a handle of the bag along a specific
trajectory with constant speed. A task consists of a param-
eterized action, the objects in the scene, and further task
parameters like how stiff the bag is (Bag Stiffness), whether
the bag is empty or a rigid object is inside (Bag Content), and
whether the handles are fixed in place, loose or moved along
a trajectory (Handle State). Each scene contains a deformable
bag, some number of rigid spheres, and a table. The bag can
interact with rigid objects and the table. For the deformable
bag, we model the mesh in Blender as shown in Fig. 2.
Compared to the cloth-like objects in previous works, our
model has a more complicated hole structure. The whole
mesh consists of 1277 particles and 4326 edges.

Fig. 2. The deformable bag in its initial pose. The first figure is the bag
template in Blender. The second figure is the bag in the Unity environment.

For the actions, we consider pushing an object towards the
deformable bag, moving a handle of the bag along a circular
trajectory, opening the bag, and lifting the bag. The handle
motions are achieved by grasping the top part of a handle
and moving it along a trajectory.

Fig. 3. Handle actions. The black point is the manipulated handle and
the gray point is the non-targeted handle. The left figure shows examples
of circular handle movement in three different coordinate planes. The right
figure shows examples of opening actions.

• Pushing an Object towards the Bag: We sample a
position to create a sphere with a random radius around
an existing object. A push trajectory is generated by
sampling a planar moving direction pointing to either
the bag or one of the other rigid objects. By applying
this strategy, we ensure that most of the actions lead to
meaningful object interactions.

• Handle Motion along Circular Trajectory: We move one
handle along a circular trajectory as shown in Fig. 3.
The trajectory is placed in one of the coordinate planes.
The radius and direction are randomized.

• Opening the Bag As shown in Fig. 3, we move one
handle away from the other fixed handle in order to
stretch the bag horizontally. Before performing the
manipulation, we randomly choose a small horizontal
deflection angle. During the manipulation, we calculate
a base directional vector depending on the handle po-
sition differences and rotate it by using the deflection
angle to construct the final moving vector.

• Lifting the Bag: Before performing this action, the bag
is dropped on the table. Then, one handle performs an
upward motion, which lifts the bag from the table. The
other handle is left loose.

B. Dataset Generation

Our simulation environment is based on Unity and the Obi
Cloth [28] extension. The Obi physics solver is optimized
for real-time cloth simulation and supports particle-level
manipulation, rich types of interactions, and editable physical
constraints (e.g., distance constraints, bending constraints,
and aerodynamics).

The simulation includes a deformable bag, a table, and
multiple rigid spheres with random radii for each task. Fur-
ther task parameters are generated as follows. By adjusting
the bending constraints in the solver, we vary the stiffness of
the bag material (Bag Stiffness). We either initialize the bag
in an empty state or with a rigid sphere inside (Bag Conent).
The left and right bag handles are either left loose or grasped



TABLE I
TASK PARAMETERS FOR DATA GENERATION

Bag Stiffness Bag Content Left Handle State Right Handle State Controlled Object Action
Soft/Stiff Object Inside Fixed Fixed Sphere Pushing an Object
Soft/Stiff Empty Fixed Fixed Sphere Pushing an Object
Soft/Stiff Object Inside Moving Fixed Left Hand Circular Handle Motion
Soft/Stiff Empty Moving Fixed Left Hand Circular Handle Motion
Soft/Stiff Object Inside Moving Released Left Hand Circular Handle Motion
Soft/Stiff Empty Moving Released Left Hand Circular Handle Motion
Soft/Stiff Object Inside Moving Fixed Left Hand Opening the Bag
Soft/Stiff Empty Moving Fixed Left Hand Opening the Bag
Soft/Stiff Object Inside Moving Released Left Hand Lifting the Bag
Soft/Stiff Empty Moving Released Left Hand Lifting the Bag

(Handle State). If a handle is grasped, it either is fixed in
place or moves along a given trajectory (opening, lifting, or
circular).

During action execution, we record the complete scene
state 10 times per second. For every recorded time step, the
scene state consists of the vertex positions of the deformable
bag, the positions and radii of all rigid objects including the
pushed sphere, and the grasped vertices on the left and right
handle. Our goal is to learn task-specific models, therefore
our dataset is grouped by task. For each task, we simulate
1,000 trajectories, which results in 60,000 recorded time
steps. The simulated task data is split into training (80%),
validation (10%), and test set (10%). We vary actions and
task parameters according to Table I to create data for 20
different tasks. For each row, we collect data for both bag
stiffness values (soft and stiff). Fig. 4 shows examples for
simulated tasks.

IV. DYNAMICS LEARNING AND PREDICTION

Based on the generated dataset, we want to learn task-
specific prediction models for the scene dynamics. Given a
scene as a set of rigid and deformable objects Ot, the goal
is to learn a dynamics model M to predict the future scene
Ot+1 after performing action at at time step t.

Ot+1 = M(Ot, at)

The set of rigid objects consists of a variable number
of spheres whose state can be represented by their position
and radius. The state of the deformable bag consists of the
position and connectivity of all vertices. The action at is
parameterized by the start and end position as well as the
radius (pstart,pend, ra) of the manipulated target, which can
be either a rigid object or one of the bag’s handles.

We define a graph representation that captures the state of
the rigid objects and approximates the state of the deformable
bag using a set of sparse keypoints. Using this representation,
we formulate a two-stage graph learning problem to facilitate
fixed time step predictions. Then, we combine multiple
prediction models with different time step horizons to enable
predictions of up to 60 time steps into the future.

A. Graph Representation

We want to represent the state of the scene objects Ot

and the action at at time step t as a graph Gt = (V,E,u)

with vertices V , edges E, and a global feature vector u.
The set of vertices V encodes position information about
the rigid and deformable objects in the scene (see Fig. 5).
We use a vertex feature vector v = (t, r, f) ∈ R5, which
encodes position t ∈ R3, radius r ∈ R, and a one-hot feature
indicating whether the vertex is fixed in place f ∈ {0, 1}.
Each rigid object becomes a vertex with the feature vector
v = (t, r, 1) ∈ R5. For the deformable bag, we use a
sparse keypoint representation, where task-relevant vertices
are chosen from the bag’s mesh. Each keypoint becomes a
vertex with a feature vector v = (t, 10−5, f), where the
radius r is set to a small constant value and f indicates
whether it can freely move (f = 0) or is grasped, i. e. fixed
in place (f = 1). Since the choice of a global coordinate
system is arbitrary, we transform the positions to an action-
local coordinate system, whose origin is the starting position
astart of the manipulated object.

The edges E build a fully connected bidirectional graph
between the vertices V . We use an edge feature vector
e = (d, c) ∈ R4 consisting of the pairwise position differ-
ences d ∈ R3 between vertices and the physical connec-
tion flag c ∈ {0, 1}. The edges connecting neighboring
vertices from the deformable bag have their physical con-
nection flag set to c = 1. All other edges have no direct
physical connection (c = 0). The global feature vector
u = (pend − pstart, ra) ∈ R4 encodes the position change
of the manipulated target and the radius of the manipulated
object ra.

B. Two-stage Graph Prediction Model

The goal of the two-stage graph prediction model is, given
the current scene state Gt, to predict the scene graph Gt+h

after h time steps where h is constant. In this work, we
focus on single time step predictions (h = 1) and longer
time steps (h = 5). For each prediction horizon h, we learn
a dynamics model which consists of two separate modules:
Active Prediction Module (APM) and Position Prediction
Module (PPM). APM is a binary classifier predicting whether
rigid objects or parts of the deformable bag will move in the
next time step. The classification is done for every vertex
in the scene state Gt. The ground-truth active labels are
generated during training based on the position difference
between the time steps t and t + h. PPM is a regression
module that directly predicts the next scene state, i. e. the



Fig. 4. Example trajectories of four actions in the dataset. Each row contains different time steps of an action. From top to bottom: Pushing an Object
towards the Bag, Handle Motion along Circular Trajectory, Opening the Bag, and Lifting the Bag.

Fig. 5. We transform a scene consisting of deformable and rigid objects
into a sparse keypoint representation. Based on the keypoints, we build a
fully connected graph, whose vertices represent keypoints and whose edges
encode the connectivity between them. The motion of the handle along the
black arrow is encoded in the global graph feature u.

expected positions of all vertices at time step t + 1. Both
APM and PPM are implemented as graph neural networks
with an encode-process-decode architecture.

APM outputs a binary classification mask through a final
softmax activation layer for the vertex features. The classi-
fication stage uses cross-entropy loss where N denotes the
number of vertices in the scene graph, ygti ∈ {0, 1} is the
ground-truth active flag and ypredi ∈ [0, 1] is the predicted
flag. The active flag is set to be 1 when the position difference
is above a pre-set threshold.

LClassification =
1

N

N∑
i=1

CrossEntropy(ygti , ypredi )

PPM is a regression model for the scene graph after action
execution using a final linear activation layer for the vertex
features. The regression stage uses a mean square error loss
between the ground-truth positions.

LRegression =
1

N

N∑
i=1

(tgti − tpredi )2

We train both models separately on the tasks in the
generated dataset. By only applying the regression update
to those vertices which have been classified as active, we
prevent spurious motion of vertices that are not involved in
the interaction between objects in the current time step (see
Fig. 6). Under a fixed time step h, we call this combination
the two-stage model (APM+PPM), whereas the regression
stage alone is called one-stage model (PPM):

Mone−stage
h (Gi) = MPPM

h (Gi)

M two−stage
h (Gi) = MAPM

h (Gi)�MPPM
h (Gi)

Here the operator � only applies the position updates from
the PPM if the vertices have been classified as active in the
APM.

C. Long Horizon Prediction Model

The graph prediction models only predict the scene for a
fixed prediction horizon h. The longer horizon model M5 is
trained with a prediction horizon h = 5, and the single time
step model M1 is trained with a horizon h = 1. By chaining
these models recursively together, we can make predictions
for any time step t.

If we only use the single time step model M1, we can
predict the scene state Gt after t time steps given the initial
scene state G0:

Gt = (M1 ◦M1 ◦ · · · ◦M1)︸ ︷︷ ︸
t times

(G0)



Fig. 6. The two-stage model takes as input the scene state as a graph Gin at a certain time step. This graph is fed into both the APM and PPM. The
APM classifies which vertices are active, i. e. will move in the next time step. In the graph Gactive, the green vertices have been classified as active and
the red ones as inactive. The PPM predicts the positions of vertices in the next time step as a graph Gposition. In a final step, only the position updates,
whose corresponding vertices have been classified as active in Gactive, are applied to the prediction result Gpred.

Fig. 7. Single time step prediction errors over all tasks for training,
validation, and test set. The mean position error is shown as the bar height
and the whiskers show the standard error over all tasks.

In this approach, we can either use the one-stage or
the two-stage model. However, this causes the prediction
error to accumulate fast. We can alleviate this problem, by
also incorporating the longer horizon model M5. In our
experiments, the controlled object is moved with a constant
speed so that moving steps may not be divisible by 5 given a
target position. First, we run M5 recursively for bt/5c steps.
Then, M1 is run for the remaining time steps t mod 5:

Gt = (M1 ◦M1 ◦ · · · ◦M1)︸ ︷︷ ︸
(t mod 5) times

◦ (M5 ◦M5 ◦ · · · ◦M5)︸ ︷︷ ︸
bt/5c times

(G0)

We call this combination of a multi-step prediction and a
single-step prediction the mixed-horizon prediction model
(see Fig. 1 for an example).

Fig. 8. Single time step prediction errors over all tasks grouped by
material stiffness. The mean position error is shown as the bar height and
the whiskers show the standard error over all tasks.

V. EVALUATION

In the evaluation, we want to investigate the benefits of
our proposed method by answering the following questions:

1) Does the inclusion of the APM (Active Prediction
Module) in the two-stage model improve the predic-
tion results over the one-stage model with the PPM
(Position Prediction Module) alone?

2) How does the material stiffness of the deformable bag
influence the prediction accuracy?

3) Does the mixed-horizon model improve long-term pre-
diction results compared to an iterative application of
one-stage or two-stage models?

To answer the first question, we evaluate the single time
step prediction performance of the proposed two-stage model
compared to the one-stage model. Fig. 7 shows that the two-



Fig. 9. Long horizon prediction errors per action for the one-stage, two-stage, and mixed-horizon models. The solid lines show the mean position error
while the colored area around the line indicate the standard deviation.

stage model decreases the mean position errors while also
lowering the inter-task variance. This shows, that the APM
improves single time step predictions when compared to the
PPM alone.

To address the second question, we compare the single
time step prediction results for soft bag material with results
for stiff bag material. Fig. 8 shows the mean position error
and the standard deviation for both materials. As can be seen,
the tasks with soft bag material have a smaller prediction
error. However, the difference is lower than the inter-task
variance, indicating that our method is able to handle tasks
independent of material stiffness.

For the third question, we compare the long horizon
prediction results for the recursive one-stage, two-stage and
mixed-horizon models on the test set. We initialize each
model with the scene state G0 at time step t = 0 and apply
the prediction in an iterative way as described in section IV-
C. Since long horizon prediction performance varies between
actions, Fig. 9 shows the mean position errors and standard
deviation for the four actions Pushing an Object towards
the Bag, Handle Motion along Circular Trajectory, Opening
the Bag, and Lifting the Bag. We can see that the two-
stage model outperforms the one-stage model consistently,
independent of the action. The difference between the models
in the lifting action is quite small, since the almost all
parts of the bag move during this action. Therefore, the
first movement classification stage is not as helpful as in
the other actions. Furthermore, the mixed-horizon model

outperforms the two-stage model for longer term predictions,
while sometimes producing worse results for short term pre-
dictions. Depending on the action, the mixed-horizon model
produces much better predictions then the two-stage model
(e.g. opening the bag), while for others the improvement
is marginal (e. g. pushing an object). Overall, the mixed-
horizon model is better suited for predictions over a longer
time periods than the one-stage and two-stage models.

VI. CONCLUSION

Predicting the dynamics of the scene is important for
robotic manipulation, and is difficult in the presence of
highly-deformable objects. One big challenge is data col-
lection. In this work, we present a novel dataset for action
effect prediction on scenes containing both rigid and cloth-
like deformable objects. Another challenge is building a
predictive model capable of generalizing to different numbers
of objects in the scene. We define a graph representation for
the scene state, where the vertices are keypoints representing
objects and their parts. Our predictive model can generalize
to different numbers of vertices in the graph, allowing us to
consider different sets of objects. We propose two modules
to capture the dynamics based on the graph networks. We
propose a mix-horizon model on top of the learned modules
to predict the future scene state and show the effectiveness
of our methods in different tasks.

In future work, we will investigate meta-learning tech-
niques to accelerate the learning of prediction models for
new tasks and reduce the required amount of training data.



Currently, the task-relevant keypoints are selected from the
simulated mesh to represent the overall shape of the bag.
We plan to investigate how to extract keypoints from real
world data such as images which is challenging due to
noise and occlusion. Furthermore, we want to study how
to incorporate the graph prediction model into a model
predictive control framework to achieve sophisticated robotic
manipulation tasks in the simulation environment and real
world.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) Project Number 146371743 TRR 89
Invasive Computing and the JuBot project funded by the Carl
Zeiss Foundation.

We would also like to show our gratitude to the European
Research Council, Swedish Research Council and Knut and
Alice Wallenberg Foundation.

REFERENCES

[1] Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani, “Object-centric forward
modeling for model predictive control,” in Conference on Robot
Learning. PMLR, 2020, pp. 100–109.

[2] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar,
“Robotic manipulation and sensing of deformable objects in domestic
and industrial applications: a survey,” The International Journal of
Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.

[3] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception,
and control methods for deformable object manipulation,” Science
Robotics, vol. 6, no. 54, 2021.

[4] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and
physics,” arXiv preprint arXiv:1612.00222, 2016.

[5] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Gold-
berg, and A. Zeng, “Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks,” arXiv preprint
arXiv:2012.03385, 2020.

[6] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation,” arXiv
preprint arXiv:2011.07215, 2020.

[7] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tac-
chetti, “Visual interaction networks: Learning a physics simulator from
video,” in Advances in neural information processing systems, 2017,
pp. 4539–4547.

[8] Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba, “Learning
compositional koopman operators for model-based control,” in
International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=H1ldzA4tPr

[9] Y. C. Hou, K. S. M. Sahari, and D. N. T. How, “A review on modeling
of flexible deformable object for dexterous robotic manipulation,”
International Journal of Advanced Robotic Systems, vol. 16, no. 3,
p. 1729881419848894, 2019.

[10] C. Luible and N. Magnenat-Thalmann, “The simulation of cloth using
accurate physical parameters,” CGIM 2008, Insbruck, Austria, 2008.

[11] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE robotics
and automation letters, vol. 5, no. 2, pp. 2372–2379, 2020.

[12] Y. J. Oh, T. M. Lee, and I.-K. Lee, “Hierarchical cloth simulation
using deep neural networks,” in Proceedings of Computer Graphics
International 2018, 2018, pp. 139–146.

[13] T. M. Lee, Y. J. Oh, and I.-K. Lee, “Efficient cloth simulation using
miniature cloth and upscaling deep neural networks,” arXiv preprint
arXiv:1907.03953, 2019.

[14] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International Conference on Machine Learning. PMLR, 2019, pp.
2555–2565.

[15] D. Omrčen, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous acquisition of pushing actions to support object grasping
with a humanoid robot,” in IEEE-RAS International Conference on
Humanoid Robots. IEEE, 2009, pp. 277–283.

[16] M. Kopicki, S. Zurek, R. Stolkin, T. Mörwald, and J. Wyatt, “Learning
to predict how rigid objects behave under simple manipulation,” in
IEEE International Conference on Robotics and Automation. IEEE,
2011, pp. 5722–5729.

[17] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using
deep neural networks,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 173–180.

[18] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning
for physical interaction through video prediction,” arXiv preprint
arXiv:1605.07157, 2016.

[19] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” arXiv
preprint arXiv:1606.07419, 2016.

[20] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects
using a push proposal network,” in Robotics research. Springer,
2020, pp. 405–419.

[21] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-
supervised deep reinforcement learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 4238–4245.

[22] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn,
and J. Wu, “Reasoning about physical interactions with object-centric
models,” in International Conference on Learning Representations,
2019, pp. 1–12.

[23] F. Paus, T. Huang, and T. Asfour, “Predicting pushing action effects on
spatial object relations by learning internal prediction models,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 10 584–10 590.

[24] A. E. Tekden, A. Erdem, E. Erdem, M. Imre, M. Y. Seker, and E. Ugur,
“Belief regulated dual propagation nets for learning action effects on
groups of articulated objects,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 10 556–10 562.

[25] E. Coumans et al., “Bullet physics library,” Open source: bulletphysics.
org, vol. 15, no. 49, p. 5, 2013.

[26] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified particle
physics for real-time applications,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, pp. 1–12, 2014.

[27] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-
based robotics: Comparison of bullet, havok, mujoco, ode and physx,”
in 2015 IEEE international conference on robotics and automation
(ICRA). IEEE, 2015, pp. 4397–4404.

[28] Obi: Unified particle physics for Unity. [Online]. Available:
http://obi.virtualmethodstudio.com

https://openreview.net/forum?id=H1ldzA4tPr
http://obi.virtualmethodstudio.com

	Introduction
	Related Work
	Deformable Object Dynamics Modeling
	Predicting Action Effects for Rigid Objects
	Physical Simulations for Data Collection

	Task Description and Dataset Generation
	Task Description
	Dataset Generation

	Dynamics Learning and Prediction
	Graph Representation
	Two-stage Graph Prediction Model
	Long Horizon Prediction Model

	Evaluation
	Conclusion
	References

