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Abstract— Dynamic movement primitives prove to be a useful
and effective way to represent a movement of a given agent.
However, the original DMP formulation does not take the
interaction among multiple agents into the consideration. Thus,
many researchers focus on the development of a coupling term
for the underlying dynamical system and its associated learning
strategies. The result is highly dependent on the quality of
the learning methods. In this paper, we present a new way
to formulate and realize interactive movement primitive in a
leader-follower configuration, where the relationship between
the follower and the leader is explicitly represented via the new
formulation. This new formulation does not only simplify the
learning process, but it also meets the requirements of several
applications. We separately tested our new formulation in the
context of the handover task and the wiping task. The results
prove the flexibility and simplicity of the new formulation.

I. INTRODUCTION

Learning of tasks from human observation and sensori-
motor experience is an essential skill in order to enable a
humanoid robot towards assistance of a human within its
environment. Especially when it comes to coordinated tasks
which involve the cooperation and interaction of multiple
agents, learning from demonstration and experience can
boost the skill acquisition process.

The learning of skills for single agent, has been thoroughly
addressed in previous approaches in the field of imitation
learning or programming by demonstration [1]. In this con-
text, generic models and representations have been proposed
which are capable of encoding a demonstrated trajectory and
which can be parameterized in order to adapt the encoded
task to different situations such as Gaussian Mixture Models
(see [2]) and Hidden Markov Models (see [3], [4]). In
recent years, a popular approach using dynamical systems
has been introduced by [5], [6] and [7] in the form of
the Dynamic Movement Primitives (DMPs). A DMP uses a
spring damping system to describe the goal attractor for a
motion primitive, whose variety is captured by a coupling
force term. With a regression learning algorithm such as
locally weighted regression, the force term can be learned
from a single demonstration.

A DMP has several beneficial properties. Due to the
spring damping system, attraction to a specified goal is
guaranteed. In addition, the force term profile encodes task-
specific characteristics which allows the reproduction of
topologically similar trajectories for different goal and start
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Fig. 1: The robot’s hand follows the trajectory generated by
CCDMP, which enables the learned wiping pattern to adapt
to the ball surface.

positions. Furthermore, by integrating a canonical system a
DMP is time-independent which enables the generation of
trajectories adapted to different task requirements.

However, the learned force term is only dependent on the
canonical system, which decays or increases if time goes on.
Hence, in interactive tasks where a moving goal represented
by another agent might eventually alter the trajectory’s shape
which is determined by the force term profile.

The learning of such tasks for multiple agents requires a
task representation which is capable of encoding the move-
ments as well as the relations between the considered agents.
In this work, we propose a novel method to combine multiple
DMPs based on the leader-follower configuration. The task-
space relation between a leading and a following agent
is described by a translational and a rotational component
which depend on the phase of the canonical system.

The paper is organized as follows. Section II provides an
overview of existing approaches which have addressed the
representation and encoding of coordinated multi-agent tasks.
In Section III, our approach in the form of the Coordinate
Changed Dynamic Movement Primitive (CCDMP) is intro-
duced. We will describe the formulation, the corresponding
learning strategy and possible applications. Subsequently,
evaluation and experiments are presented in Section IV. In
conclusions, the work is summarized and notes to future
works are given.



II. RELATED WORK

Recent research efforts, in particular, related to the field of
learning from human observation have been dedicated to the
modelling and the representation of complex manipulation
and cooperative tasks which involve mostly two agents. In
this context, the original DMP formulation has been extended
in several works to address the requirements imposed by
interactive tasks.

[8] introduced interactive DMPs for the representation of
cooperative tasks by incorporating two dynamical systems in
order to encode the movements of the involved agents. To
ensure that both agents reach a common goal configuration,
the dynamical systems are extended by a force term which
emerges from a virtual spring with a fixed, task-specific
length or distance spanned between the two agents.

In [9], the interaction forces between agents are encoded
in a continuous coupling term which is added to the DMP
formulation. The coupling term is gradually learned through
interactive learning control (ILC) based on sensory feedback.
In this case, the impact of the leader’s behaviour on the
follower is considered as an external force changing the
follower’s acceleration. The coupling term is merely phase-
dependent and does not consider the relation between the
agents in task space which makes the adaptation of the pro-
posed DMP formulation to different scenarios more difficult.

In [10], interactive movement primitives are presented
which combine separately trained DMPs for each agent in
cooperative tasks with a predictive distribution. The distri-
bution allows the inference DMP parameters of one agent
based on the observed trajectory of the other agent in order to
obtain a temporally synchronized task execution. However,
the presented approach is restricted to a single interaction
pattern and not easily generalizable. Thus, in [11], inter-
active movement primitives and Gaussian mixture models
are combined to obtain a mixture of interactive movement
primitives. Using this representation, the variance in multiple
demonstrations of an interactive task can be encoded.

In [12], handover tasks are addressed by reformulating
DMP with weighted shape and goal attractors. The intro-
duction of different weighing function allows better control
on the evolution of the DMP and the transition between
following the encoded trajectory and reaching the goal.

Instead of using an external force, a more general idea
is to define a mapping from the leader to the follower with
regard to position and orientation. CCDMP realizes this idea
by using coordinate transformation matrix RLG, where G is
for the global coordinate and L for the leader’s coordinate,
to transform the follower’s state from the leader’s coordinate
to the global one. The entries of this matrix are changed with
the leader’s state.

III. THE CCDMP FORMULATION

In this section, we will briefly describe the formula-
tion of the Dynamic Movement Primitive (DMP). Subse-
quently, the Coordinate Changed Dynamic Movement Prim-
itive (CCDMP) formulation is introduced.

A. Dynamic Movement Primitive
The original formulation of DMP mainly consists of the

transformation systems, the corresponding force terms, and a
canonical system. A transformation system can be described
as follows:

τ · v̇ = K · (g − y)−D · v + scale ∗ f
τ · ẏ = v,

(1)

where (v, y)T is the state describing the velocity and the
position of an agent which is attracted to the current goal
g by critically-damped spring damping system with spring
constant K and a damper factor D. The temporal vector tau
can be used to scale the evolution of the dynamical system
in time, and the scaling term scale is a matrix which avoids
unexpected movement when adapting to new start and goal.
The force term f can be described as follows:

f(u) =

∑N
i=1 Ψi(u)wi∑N

i=1 Ψi

u, (2)

where Ψi is the i-th kernel function, N is the total number
of the functions, and u is the canonical value determined by
the canonical system. The canonical system is used to make
the entire dynamical system time-invariant and drives the
evolution of the transformation systems in a synchronized
way. The formulation of the canonical system depends on
the type of the movement, discrete or rhythmic, to be
represented. For example, the canonical system for a discrete
movement primitive has following form:

τ · u̇ = −αuu, (3)

where αu is the parameter of the canonical system.

B. General Idea
We assume that in an coordinated task between two agent,

one agent is taking a leading role and the other one is
following. The follower’s state (yf ) ∈ Rm depends on the
leader’s state (yl) ∈ Rn. The follower needs to be adjusted
based on the leader’s state. The adjustment of the follower’s
state is defined as a function in Rm. Hence, the mapping from
the leader’s state onto the follower’s adjustment is defined
as following:

φ : Rn → H : {h : Rm → Rm}

(xl1, x
l
2, ..., x

l
n)T → h(xl1, x

l
2, ..., x

l
n)(·),

(4)

where the function h on Rm, is determined, once the
leader’s state is fixed. Thus, a trajectory in Rn is correspond-
ing to a trajectory in the continuous function space H, if φ
is a continuous mapping.

In the Cartesian space, n is equal to six. Three dimensions
are for position, the other three for orientation. Considering
only the follower’s translation in the homogeneous coordi-
nate, m is equal to four. Consequently, the homogeneous
transformation matrix acts as a linear mapping in R4, which
is determined by the leader’s state in R6.

The formulation of CCDMP is based on this general idea,
which is described in detail in the next section.



C. Coordinate Changed Dynamic Movement Primitive

CCDMP consists of two parts, leader’s DMP and fol-
lower’s DMP. The leader’s DMP uses the basic formulation
with a canonical system for discrete or periodic movement.
The follower’s DMP changes its pose by multiplying both
sides of the equations with a coordinate transformation
matrix.

τ ·RLG · v̇G = RLG · (K · (gG − yG)−D · vG+

scaleG · fG)

τ ·RLG · ẏG = RLG · vG,

(5)

In equation 5, RLG is a coordinate transformation, which
is a 4 × 4 homogeneous transformation matrix, and vG

is the current velocity in the global coordinate system. A
homogeneous vector with fourth element zero is used to rep-
resent velocity or acceleration. The force term in the leader’s
coordinate system can be different from the force term in
the global coordinate system, namely fG. This difference is
caused by the rotation of the leader’s coordinate system in
the global one. The global force term is scaled by the global
scaling matrix scaleG. It is difficult to learn fG in general.
However, the force term in the leader’s coordinate system
fL is easily learned from the follower’s local movement.
The goal in the global coordinate gG is dependent on the
leader’s position and orientation, which is unknown to the
follower at the beginning, while the follower’s local goal
gL = RLG · gG is already defined. Hence, with RLG and fG

the formulation original transformation system in Eq. 1 is
changed as follows:

τ ·RLG · v̇G = K · (gL −RLG · yG)−D ·RLG · vG

+scaleL · fL

τ ·RLG · ẏG = RLG · vG.
(6)

For the purpose of synchronization, the canonical system
of the follower should coincide with the one of the leader.
However, follower and leader are allowed to have different
motion patterns: discrete or periodic. One solution is to have
a multi-dimensional canonical system. Consequently, the ra-
tio between the temporal factors governs the synchronization.
Since the homogeneous matrix RLG is determined by the
position and the orientation of the leader, the dimensions
in this DMP formulation cannot be treated independently
when the leader’s rotation is not trivial. The leader’s DMP
formulation is given by the following equations:

τl · v̇l = Kl · (gl − yl)−Dl · vl + scalel · fl

τl · ẏl = vl.
(7)

This DMP encodes six dimensions, three for the leader’s
position and the remaining three for the leader’s orientation.

The leader’s position determines the origin of the leader’s
coordinate system.

The solution to the follower’s DMP is given by the Euler
method:

RLG,t+1 · vGt+1 = ∆t
τ · (K · (g

L
t −RLG,t · yGt )

−D ·RLG,t · vGt + scaleL · fLt )

+RLG,t · vGt

RLG,t+1 · yGt+1 = ∆t
τ ·R

L
G,t · vGt +RLG,t · yGt .

(8)

If ∆Rt = (RLG,t+1)T · RLG,t, then the above equations
system can be reformulated as:

vGt+1 = ∆t
τ · (K · ((R

L
G,t+1)T · gLt −∆Rt · yGt )

−D ·∆Rt · vGt + (RLG,t+1)T · scaleL · fLt )

+∆Rt · vGt

yGt+1 = ∆t
τ ·∆Rt · v

G
t + ∆Rt · yGt .

(9)
When the leader’s movement includes only translation,

each dimension can be treated separately. Thus, the coordi-
nate transformation matrix R can be represented by adding
a term to the original value, for example, that R · y =
y +C. After extracting and adding all the terms (Cs) given
by the coordinate transformation, a coupling term appears
in the CCDMP formulation. As a result, this translation
CCDMP looks very similar to the one described in [9]. If
the translation is a pure displacement of leader’s position,
CCDMP generates a new trajectory by the superposition of
both trajectories.

Instead of trying to keep the dynamic features (shape and
acceleration profiles) of a trajectory in the global frame after
adapting it to a dynamic environment, CCDMP maintains the
trajectories’ features in the local frame, namely the leader’s
coordinate system. Hence, from the leader’s view, the fol-
lower can always draw similar trajectories learned from the
demonstration, no matter what position and orientation the
leader takes. In Fig. 2, we show an example which benefits
from this formulation.

Moreover, CCDMP allows the dynamic movement of the
leader, which is used to encode a cooperative task.

D. Application

CCDMP meets a large range of applications including the
human-robot interaction. Unlike coupled DMP, instead of
directly learning the relation between two agents, CCDMP
formulation makes the leader-follower relation more explicit.
The leader’s moving pattern, rhythmic or discrete, decides
the follower’s global trajectory. We can construct four dif-
ferent types of leader-follower systems based on two types
of movements, discrete-discrete, discrete-periodic, periodic-
discrete and periodic-periodic.



Fig. 2: If the changed goal is in the 3D space, DMP fails to
generate a reasonable trajectory because of the independence
of dimensions in the multi-dimensional DMP formulation.
Conversely, CCDMP can easily solve the problem by consid-
ering the start position as a leader, whose orientation together
with the follower’s local goal constructs a polar coordinate
system describing the changed goal of the follower’s DMP
in the global frame.

Discrete-discrete system can be used in a situation con-
cerning multiple end-effectors with various discrete move-
ments, such as handover task and bimanual manipulation.
The purpose of this system is to reach the common attractor
in the task space. CCDMP can also be used to represent
complex discrete-periodic tasks of physically coupled agents
such as the arm and the hand. For example, a wiping task
is led by the arm movement which sets the anchor point
of a following, periodic wiping movement executed by the
hand. A further example is a bimanual task with one hand
performing a periodic movement such as stirring, where the
hand holding the bowl represents the leader and specifies the
position and orientation of the other hand.

E. Learning Strategy

The learning strategy of CCDMP is straightforward, if
the CCDMP is used to encode the movements of two
independent agents. A single demonstration of the interaction
between the leader and the follower is sufficient for the
learning of the two DMPs. The DMP for the leader is learned
directly from the leader’s trajectory, while the follower’s
local DMP is obtained by transforming follower’s state into
the leader’s coordinate system. The force term profile of the
local DMP is kept in the CCDMP.

To train a CCDMP for complex discrete-periodic task such
as wiping, a demonstration of this task is given by a global
trajectory. The trajectory has to be decomposed in a global
leader movement and local periodic motion pattern. One

Fig. 3: Separate the discrete part and the periodic part from
the original wiping pattern. The window’s size is 101 for
1000 sample points. The original trajectory in this figure is
created to test the moving average technique. In a human’s
demonstration (see Fig 8), however, it is difficult to keep
the same periodic pattern. Hence, the perfect reproduction
after trajectory separation is not possible. However, we do
not focus on an exact reproduction, which can be easily done
by a traditional discrete DMP. In contrast, we focus on the
generalization and learning the skill.

solution is to use moving-average technique to extract the
approximated discrete part from the original movement. Then
the periodic part can be obtained by subtracting the discrete
part from the trajectory. A discrete DMP for the leader and
a periodic DMP for the follower are separately learned from
the discrete and periodic parts.

The problem of the moving average approach is that it
is difficult to decide the reasonable window’s size. If the
window’s size is too small, then the discrete part might
contain undesired jerks. If the window’s size is too large,
then the discrete part might be much shorter than the
original trajectory. In section IV, we address this problem by
analysing the frequency of the given wiping movement. The
concept of movement’s decomposition is depicted in Fig. 3.

IV. EXPERIMENTS

In this section, two different examples are illustrated
to demonstrate the strength of CCDMP formulation: the
handover and the wiping task. The first one is realized
by a discrete-discrete system. Different from other DMP
formulations, CCDMPs can not only consider the translation
of the other agent’s hand, but also its orientation. For the
wiping task, CCDMP facilitates the adaptation of a wiping
pattern to a changing and moving surface, e.g. a service
robot wiping human being’s back, whose surface is not only
complex, but also moving all the times.

A. Handover Task

One of the important applications in human-robot inter-
action is the handover task. The handover task is difficult,
since the robot must be able to predict the exchange position



Fig. 4: Handover task in different cases. The green line
represents the moving goal. The training trajectory, the black
solid line is a minimum jerk trajectory. The desired trajectory,
the cyan one, is also a minimum-jerk trajectory connecting
new start position and goal. The blue dotted line is generated
by the original DMP and the red dotted one is the result given
by the CCDMP. As diagrams show, CCDMP is better than
DMP according to the criterion stated in the text. (u is the
canonical value)

when the partner hands over an object. At the same time,
the movement of the robot’s arm should look smooth and
naturally.

The handover task is similar to the docking problem,
where the robot should manipulate its hand to find a correct
or suitable position and orientation to receive the object from
the passer or pass the object to the receiver. Not only the
exchange position but also the exchange orientation plays an
important role during handing over the object.

Instead of predicting the exchange position, observing the
movement of the leader’s hand is a much simpler way to
accomplish the task. It is not novel to generate a trajectory
for a moving goal using DMP. In [12], the authors argued that
the original DMP formulation is very focused on reaching
the goal which prevents the generation of a shape-preserving
trajectory. Hence, they separated the shape attractor from the
goal attractor in the original formulation and used a weight to
control both parts. However, the shape-preserving trajectory
might not be the best choice for the handover task, e.g. if
leader and follower exchange their standing positions. As a
result, an appropriate handover task trajectory should fulfill
these two criteria:

1) The generated trajectory should finally reach the goal.
This should be the dominant requirement;

2) The shape of the generated trajectory should be close
to the shape of the adapted training trajectory for a new
start and goal position. For example, if the training tra-
jectory is a minimum-jerk trajectory, the good generated
shape should be close to the shape of a minimum-jerk
trajectory with new start position and goal.

Instead of considering the leader’s hand as a moving
goal, we consider the leader’s hand as the origin of a local

coordinate. The follower executes its own DMP in this local
coordinate system. Fig. 4 shows that CCDMP outperforms
the original DMP formulation with regard to the two criteria
above. The CCDMP generated trajectories that are closer to
the desired trajectory compared to the ones generated by the
original DMP in the first four cases. In the last case, DMP
cannot adapt to the rapidly moving goal, while CCDMP
reaches the leader in the early stage and then follows it in
the rest of the time. In fact, CCDMP guarantees to reach the
leader’s state theoretically, because the follower must finish
its local movement after a period, whose length is dependent
on the follower’s temporal factor. In contrast, other DMP
formulations in the papers mentioned before cannot ensure
the reachability of the unexpected moving goal because of
the global force term. The stable property is only guaranteed
when the canonical system runs out and the canonical value
is close to zero. The DMP without the force term is a PD
controller when the derivative of goal movement is also
added into the original formulation (Eq 10).

τ · v̇ = Kp · (g − y)−Kd · (ġ − ẏ) + scale · f

τ · ẏ = v.
(10)

The other problem of the handover task is the leader’s ori-
entation, which has been given less consideration in previous
approaches. As mentioned before, handover task is similar
as the docking problem. The robot must be able to choose a
correct position for different leader’s orientation to receive or
pass the object. With CCDMP, it is easily solved, since the
change of the leader’s orientation will rotate the follower’s
trajectory and enforce the follower reach the leader from the
similar direction as in the demonstration. Fig. 5 shows the
docking problem solved by CCDMP.

CCDMP mentioned here only concerns the follower’s
position change, which is dependent on the leader’s position
and orientation. The follower’s orientation is not covered
in the above CCDMP formulation. In fact, it is difficult to
decide the follower’s orientation without losing the capability
of generalization. For example, in a handover task, the
follower’s orientation is sometimes dependent on the target
object, even when its position is determined. One solution
to this problem is to learn another CCDMP related to the
follower’s orientation change in the leader’s local coordinate
system. The learning can be done easily by calculating
the orientation difference between follower and leader at
each time stamp and learning a DMP on this orientation
difference trajectory. The CCDMP’s formulation should be
also changed in this case. Instead of only concerning the
position vector, a more general version of CCDMP directly
manipulates the transformation matrix including translation
and rotation. This generalized CCDMP is not concerned in
this paper and it might be our future work.

In Fig 5, we show that the follower’s trajectory is altered
by the leader’s orientation change when using CCDMP. The
follower’s orientation change is designed to be always against
the leader’s orientation.



Fig. 5: The red dots represent the follower’s positions at
different time points, while the blue dots are for the leader’s
positions. Two rectangles with one missing edge are sepa-
rately used to represent the orientation of both agents. The
direction of the CCDMP generated follower’s trajectory is
always against the direction of the leader’s open mouth. The
final trajectory is projected onto the YZ-plane. The follower’s
orientation is designed to be always against the leader’s
orientation.

B. Wiping Task

As mentioned before, CCDMP can be used to generate
different wiping patterns. The wiping movement can be
considered as a simple periodic pattern moving along a
trajectory, which might be represented by a discrete motion
primitive. In CCDMP formulation, this discrete DMP is
regarded as the leader and the follower generates the periodic
part. Compared with a periodic DMP with a moving anchor
point, the movement of the anchor point in CCDMP is also
described by a movement primitive, which means that it can
also be learned by observing and segmenting the wiping
movement of a demonstrator. One solution mentioned before
is to use the moving average technique to extract the discrete
part from the original wiping movement and learn a DMP
based on it. After learning both DMPs, different wiping
pattern can be generated by adjusting the parameters in both
DMPs. Fig. 6 shows the generated trajectory according to
different parameter settings. After synchronizing the canoni-
cal systems, the temporal factor ratio ( τfollower

τleader
) decides the

final wiping movement.
The discrete and periodic parts of the CCDMPs can be

replaced with more suitable discrete respectively periodic
DMPs. For example, for a given surface, a discrete DMP
can be trained which follows the object surface. This way,
CCDMPs can be constructed with are immediately adapted
to registered surface. Analogously, the periodic part can
replaced with the one from another CCDMPs in order to
meet changing task constraints.

Another application of CCDMP in wiping or washing
tasks is the adaptation to the movement of the other agent.
This is similar to the above handover task. For example,

Fig. 6: Different trajectories generated by the same CCDMP
with different parameters. The most top left diagram shows
the original trajectory. The second diagram in the first line
is the reproduction of the original trajectory by CCDMP. In
the third diagram, we change the goal to a new position.
In the bottom left diagram, the follower’s amplitude is the
triple of the original amplitude. The last two diagrams show
the effect of the temporal factors’ ratio (TFR). The small
temporal factor ratio ( τfτl = 0.5, where the character f is for
the follower and l is for the leader) generates a trajectory with
sparse periodic patterns, while the large temporal factor ratio
( τfτl = 3.0) is corresponding to a dense trajectory.

the robot must be able to adapt its wiping movement to
the movement of the object surface, e.g. a robot washing
a human’s back. The movement of the human’s back is
represented by a discrete DMP in CCDMP formulation and
considered as a leader. Fig. 7 shows that a periodic movement
is adapted to a moving surface represented by an another
discrete DMP.

The surface movement can be represented by a discrete
DMP, while the surface itself can be represented by an
another discrete DMP. They are both the leaders of the simple
periodic pattern. Furthermore, the surface’s movement should
lead the movement on the surface. Hence, the CCDMP
formulation can be extended to a hierarchical leader-follower
system. The leader in one CCDMP formulation is the fol-
lower in another formulation.

In the following, we will use CCDMP in a simulator to
adapt a wiping pattern to a ball surface. In this experiment,
the discrete trajectory for the ball surface is manually de-
signed and learned by the robot, while the periodic part
is learned by extracting it from the original wash back
movement in our motion database.

As mentioned before, we use mean average technique to
extract the discrete movement. The rest part is obtained by
subtracting discrete part from the original trajectory. Because
the wiping pattern is repeated several times in the demonstra-
tion, it is necessary to decide its frequency. In order to get
the frequency, we observe the Fourier transformation of the
rest part and find the frequency with the maximal spectrum.



Fig. 7: The periodic movement is adapted to a moving and
rotating surface described by an another discrete DMP. The
red line is the global trajectory of the follower, whose re-
sponsibility is to generate a wiping pattern on the rectangular
surface. The blue point is the origin of this circular pattern.

After getting the frequency, we cut the rest part into several
small segments according to the inverse of the frequency and
average them to get the approximated periodic pattern. Fig. 8
shows the result. In order to reproduce the original wiping
trajectory, an amplitude profile is kept when extracting the
periodic pattern. Because the real wiping movement is not
strictly periodic, it changes with different amplitudes during
the demonstration.

The discrete DMP for wiping a ball is manually designed.
It is a trajectory along the ball’s surface. The benefit of using
CCDMP is that we do not need to learn another DMP when
changing the ball’s size. If the ball’s size is enlarged, we
can change the trajectory by only modifying the goal of the
discrete DMP. Once CCDMP is learned, the robot is able to
wash balls of different sizes (see Fig. 9).

V. CONCLUSION AND FUTURE WORK

In this work, we introduce the Coordinate Changed Dy-
namic Movement Primitive which is a generalization of
the original Dynamic Movement Primitive. Its flexibility,
extensibility, and the encoding of the leader-follower con-
figuration allows the representation of complex coordinated
tasks of independent agents such as handover tasks and of
physically coupled agents such as a wiping task of a hand-
arm system. In our experiments, we showed the suitability
of CCDMP to represent tasks which describe interaction
and coordination between multiple agents. Furthermore, we
showed that environmental elements such as a surface to be
wiped can be encoded as a DMP and used to generate a
well-adapted wiping movement.

However, the learning strategy and trajectory segmenta-
tion approach are designed according to the examples that
have been presented in the paper. We will approach this
problem by integrating sensorimotor feedback of the robot
in order to explore an unknown object and task properties
using vision, haptics and proprioceptive information. The
result of the exploration can be processed and reduced
to a trajectory, which can be used to learn a CCDMP.

Fig. 8: Trajectory segmentation of a real wash back move-
ment. The top most diagram is the original wiping trajectory,
which is extracted from the wash-front motion saved in KIT
motion database [13]. It is segmented into two different
parts: periodic part and discrete part. The periodic part is
learned and stored in the wiping database. The discrete part
is used to record the surface’s situation. The bottom image
shows the result of the reproduction using CCDMP.

Furthermore, we will integrate sensorimotor feedback in an
iterative CCDMP learning process in order to refine learned
task representations. In hand over task, the robot should also
adjust its hand’s orientation according to the position and
the orientation of the partner. We will extend the CCDMP,
in order to consider the follower’s orientation as well.
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