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Abstract— Dynamic movement primitives prove to be a useful
and effective way to represent an action of a given agent.
However, current DMP formulations do not take the interaction
among multiple agents into the consideration. We propose a
new formulation called Coordinate Change Dynamic Movement
Primitive (CC-DMP), which explicitly represents the relation-
ship between leader and follower in multi-agent collaborative
tasks. The formulation of the CC-DMP is motivated by the idea
of learning the relationships among interacting agents instead
of learning single agent movements. We extend this idea in
our previous work further to include a coupling term into the
formulation, which is initially learned to adapt the CC-DMP
to the current environment and context and is subsequently
refined to account for dynamic changes perceived by the agent’s
sensor system. The incorporation of the coupling term in the
formulation allows learning and adaptation of CC-DMPs for
interaction tasks as well as encoding the complexity of the
learned actions and their adaptation to dynamic changes in the
scene, specifically caused by another agent. We demonstrate
our approach in the context of learning wiping movements for
dynamically changing task constraints.

I. INTRODUCTION

Learning actions from human observation and sensori-
motor experience is an essential skill in order to enable a
humanoid robot towards assistance of a human within its
environment, especially in the case of interaction tasks which
might involve physical contacts or coupled actions. Skill
learning for a single agent has been thoroughly addressed
in previous approaches in the field of imitation learning
or programming by demonstration [2], [3]. In this context,
generic models and representations have been proposed
which are capable of encoding a demonstrated trajectory and
which can be parameterized in order to adapt the encoded
task to different situations such as Gaussian Mixture Models
(see [4]) and Hidden Markov Models (see [5], [6]). In
recent years, a popular approach using dynamical systems
has been introduced in [7], [8] and [9] in the form
of the Dynamic Movement Primitives (DMPs). A DMP
describes a movement using a goal attractor whose shape
is encoded by a nonlinear perturbation force term based
on a demonstrated trajectory. With regression algorithms
such as locally weighted regression, this force term can be
learned from a single demonstration. A DMP has several
beneficial properties. Due to the spring damping system,
attraction to a different goal configurations is guaranteed.
In addition, the force term profile encodes task-specific
characteristics which allow the reproduction of topologically
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Fig. 1: Wiping system based on KIT motion database [1].
A wiping movement is extracted from the motion database.
After trajectory analysis, the periodic pattern is learned
using the original DMP formulation. With the CC-DMP
formulation, the learned wiping pattern is adapted to the
movement of human’s back. The novel coupling term applies
force adaptation of the wiping movement and generates a
desired constant pressure on the surface as depicted in the
bottom-right image.

similar trajectories for different goal and start positions. In
order to consider interactions , a new coupling term is usually
added to the DMP formulation. This coupling term explicitly
defines a mapping from the sensor feedback to the immediate
reaction, as an example, a force field is constructed to avoid
obstacles or keep distance between two agents. Furthermore,
the parameters of the coupling term can be learned with
reinforcement learning strategies from multiple interactive
demonstrations, such as lifting an object with an another
agent several times. However, such strategies can only handle
relatively static environments, where crucial task-specific
parameters must remain constant, e.g. the height of the agent
involved in the lifting task.

In fact, the feature space in which we describe the motions
for multi-agent systems is high-dimensional, much larger and
has more variance than the feature spaces describing single-



agent motions. However, the mutual consideration of both
agents is essential in order to capture the important aspects of
interaction task. Thus, to simplify the learning of interaction
actions, we focus on learning the relationships among agents
instead of learning the agents’ motions. The formulation of
the CC-DMP is motivated by this idea. It directly learns the
relationships among agents for a special skill in the task
space. This relationship is described as the follower’s local
movement in the leader’s coordinate system.

In this paper, we introduce a coupling term which is
used to enrich the CC-DMP formulation. The coupling term
facilitates the learning of actions in complex situations and
environments and allows the gradual refinement of a CC-
DMP based on sensorimotor experience. In other words, CC-
DMP captures the variance in interaction tasks while the
coupling term learns specific variations influenced by the
current situation and environment. For example, in a wiping
system, CC-DMP is used to encode the relationship between
a wiping movement and a moving wiping surface, while the
coupling term adapts to the roughness, which is different but
relatively static for different surface. We will discuss this idea
in more detail in this paper and describe how to achieve force
adaptation using coupling term in the CC-DMP formulation.

The paper is organized as follows. Section [lI| provides
an overview of existing approaches which have addressed
the representation and encoding of coordinated multi-agent
tasks. In Section [T} we briefly mention our previous work on
Coordinate Change Dynamic Movement Primitive [10]. After
that, we will introduce a coupling term into the CC-DMP
formulation and discuss its learning strategy in Section
Subsequently, a complete force sensor based wiping system
is constructed and described in Section In conclusions,
the work is summarized and an outlook is given.

II. RELATED WORK

Recent research efforts, in particular, related to the field of
learning from human observation have been dedicated to the
modelling and the representation of complex manipulation
and cooperative actions which involve mostly two agents. In
this context, the original DMP formulation has been extended
in several works to address the requirements imposed by
interactive actions. [11] introduced interactive DMPs for
the representation of cooperative tasks by incorporating two
dynamical systems in order to encode the movements of the
involved agents. To ensure that both agents reach a common
goal configuration, the dynamical systems are extended by
a force term which emerges from a virtual spring with a
fixed, task-specific length or distance spanned between the
two agents. In [12], the interaction forces between agents are
encoded in a continuous coupling term which is added to the
DMP formulation. The coupling term is gradually learned
through interactive learning control (ILC) based on sensory
feedback. The coupling term is merely phase-dependent and
does not consider the relation between the agents in task
space which makes the adaptation of the proposed DMP
formulation to different scenarios more difficult. In [13],

interactive movement primitives are presented which com-
bine separately trained DMPs for each agent in cooperative
tasks with a predictive distribution. However, the presented
approach is restricted to a single interaction pattern and
not easily generalizable. In [16], the force adaptation is
realized by learning z-direction offset. This offset is learned
incrementally, because it should be adjusted on-the-fly for
different wiping surface. However, the described method
does not support the surface movement, and it is difficult
to adjust the amplitude of the periodic pattern, because the
z-offset is dependent on the canonical value but not on
the contact position. If the amplitude is changed, the z-
offset must also be changed and learned from the beginning.
Moreover, it is not intuitive to control the pressure on the
surface, which is achieved by increasing or decreasing the
virtual z-offset.

III. LEARNING INTERACTIVE ACTIONS
A. Dynamic Movement Primitives

Dynamic Movement Primitives [l| are action representa-
tions based on a dynamical system combined with a non-
linear shape attractor which is capable of encoding the
characteristics of arbitrary complex trajectories.

TV =

K-(g—y)—D- v+ f-scale
Ty = v,
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where y is the current state, v is the derivative or the velocity,
f is the force term which is scaled by the scaling term scale.

A DMP can be also considered as a high-level PD con-
troller with an additional control term. In the PD controller,
the error is the offset between the goal and the current
position. Thus, the goal movement is also taken into the
consideration.

In Eq. 2 K, is corresponding to the spring factor K and
K, is the damper factor D. In the original DMP, the goal is
fixed, thus, ¢ = 0.

Kp-(g—y)+Ka-(§—9) +scale- f. (2)

B. Coordinate Change Dynamic Movement Primitive

Ty =

The works mentioned in section [[I] consider one agent at
a time and try to introduce as much dynamic environmental
information as possible into the formulation, which increases
the learning complexity and decreases the generalization
capability. For example, reinforcement learning adjusts DMP
parameters for a relatively static environment, which allows
only minor changes in a short period.

One approach is to find a better way to describe the
task, which can capture as many variations as possible.
We rely on the fact that the relationship of multiple agents
plays an important role in an interactive task and that this
relationship almost always changes in the same way for
different variations. As a simple example, in a handover
task, two agents tend to reach the same attractor point in the
task space, no matter where they start and where the object
exchange position is. Taking into account the relative position



and orientation between a leader and a follower in the task
space, we have proposed a new formulation called Coordi-
nate Change Dynamic Movement Primitive (CC-DMP) [10],
which allows to learn a follower’s DMP in the leader’s
local coordinate system and execute it while considering the
leader’s movement. The CC-DMP is formulated as coupled
multi-dimensional dynamical system as given in eq.
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where RE is a transformation matrix from the global to local
coordinate system. g is the local goal which describes the
final leader-follower configuration. E.g., a zero local goal
indicates that the follower and leader tend to reach the same
point attractor in the task space, if the follower executes
a discrete movement. The local scaling matrix scale” and
local force term f determines the additional control signal
which is needed to ensure that the relationship follows a
task-specific path in the configuration space.

In our CC-DMP formulation, the leader’s position and
orientation determine the follower’s position, while the fol-
lower’s orientation is not taken into the consideration. In
many tasks, the orientation relationship between the follower
and the leader remains unchanged. For example, the fol-
lower’s hand has the similar pose as the leader’s hand during
the hand-over task, where the follower’s orientation is against
the leader’s orientation in general. The CC-DMP described
here represents only a controller or kinematic path planner
for the follower’s position. However, it is not difficult to
construct another CC-DMP which determines the follower’s
orientation. In other words, we are able to learn a DMP
representing orientation relationship. Then, the follower’s
orientation is calculated by this DMP based on the leader’s
orientation.

The proposed CC-DMP is suited for tasks, where the
leading agent’s movement is demonstrated beforehand, such
as a bi-manual task or a hand-over task with at least one
demonstration. Moreover, CC-DMPs can also be used for
on-the-fly changing leader’s state, for example, for a moving
goal in the hand-over task as we showed in [10]. Given
continuous and reliable sensory feedback for detecting the
leader’s state, the CC-DMP would work without leader’s
DMP formulation. But if such sensory feedback fails to
provide continuous leader’s state change, the follower’s
formulation cannot adjust to sudden changes in the leader’s
behaviour such as a jump of the leader’s coordinate system
causing high acceleration and eventual damage to robot.
Hence, the leader’s DMP cannot be ignored. In on-the-fly
applications, there is no rule defining leader’s movement
from one place to another, because it is not observed be-
forehand, hence, the force term of the leader’s DMP should
be set zero. In this case, the leader’s DMP is a simple PD
controller controlling a virtual leader towards the current

leader’s position.

IV. ADAPTATION OF INTERACTIVE ACTIONS

A. Coupling term in Dynamical System

Here, we introduce the coupling term which is used
to extend DMP formulation in order to allow a DMP to
accommodate environmental changes. Instead of directly
adjusting the learned parameters of the nonlinear perturbation
force term with regard to dynamic environments, we add
an external coupling term which provides a more flexible
solution. Thus, the extended DMP is a combination of a
goal attractor (PD controller), a shape attractor (internal force
term) and an environment adaptor (coupling term). Based
on the extended DMP formulation, the original CC-DMP
formulation presented in [10] changes as follows:
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where C' is the external coupling term, which is given as:
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where u is a phase vector, ®; is the ith kernel function
and 0 is the parameter to learn. The phase vector u is a
multi-dimensional vector describing the local environment,
for example, a 2D vector representing the relative contact
position in the wiping task. The multiplier 7 for the coupling
term in Eq 4] guarantees that the change of execution speed
will not affect the value of the coupling term, because it only
depends on the local environment. The scaling term scaleé
in Eq. ] changes for different initial configurations and its
effect is similar to the scaling term scale’ of the force term.
As an example, it enables different initial z-offsets for the
force adaptation during the wiping task.

; (&)

B. Learning Coupling Term

According to the sensor feedback, a closed-loop con-
troller is designed to adjust the required coupling term.
The controller’s result is learned with respect to the local
environment. A function approximator is trained and later
used to predict the required coupling term based on the
current local environment, and the predicted coupling term is
iteratively adjusted by the controller. This function approxi-
mator should be updated after each execution, thus, it must
support incremental learning. In this paper, we use Locally
Weighted Projection Regression (LWPR) [17] to learn the
coupling term. As a result we obtain a multi-agent system
consisting of 1) a CC-DMP which adapts the motion to the
leader’s behaviour and 2) a learned coupling term which
adapts the motion to relatively static local environment,
which does not change at least for a short period.



Fig. 2: Wash-back movement in the simulator. The movement
of human’s back is manually controlled. CC-DMP formula-
tion enables the wiping pattern adapting to the movement of
the human’s back.

C. Sensor-based Force Adaptation

In the above CC-DMP formulation, it is easy to generate
an extra force by adding a coupling term. CC-DMP is a
second-order dynamical system. Hence, the generated force
is proportional to the coupling term. In many cases, however,
there is no knowledge about how strong the external force
should be in order to ensure the required pressure on the
surface, because the original TCP’s position has an offset to
the target surface. And it is difficult to directly determine the
contact position without the object’s model or an accurate
vision system. The basic idea is to gradually adjust the
coupling term until the force sensor gives reasonable signals.

In order to guarantee the stability of the force control, we
use the following controller [f] to derive the next coupling
term Cy41 based on the current one Cj.

Ct-‘,—l = Ct+kc(kF(Fg_Ft)_dFFt) 5 (6)

where F, is the required pressure on the target surface
and F} is the sensor feedback. k- defines the relationship
between real force and the coupling term. kp and dp are
parameters for proportional and derivative parts separately.
The change of the coupling term is proportional to the result
given by a PD-like controller, which avoids significantly
large overshoots which may damage the robot.

V. APPLICATION: ROBOT WIPING SYSTEM

One important task for a service robot is to help people do
housework, such as wiping the table. Hence, a wiping system
which is able to adapt to different wiping surface is required
in this context. A general wiping movement is a coupling
between the wrist’s periodic movement and the arm’s discrete
movement. In this case, the arm is naturally considered as the
leader and the wrist as the follower. The leader determines
the setting point of the periodic wiping pattern, while the
follower is the executor. In an adaptable wiping system, the
wiping pattern must be adjustable for different, sometimes
complicated, wiping surface. At the same time, the arm as the
follower must react to the movement of the wiping surface
as the leader, which leads to a stable wiping system in a
dynamic environment. These two difficult requirements are
accomplished by using a two-layer CC-DMP framework with
coupling term .

A. Wiping System

Consider that the target surface is the leader of the wiping
motion, whose local coordinate system is the playground,
where the wiping pattern is executed. On the other hand,
the setting point of a wiping pattern must follow a path in
order to cover the whole surface. The reason to separate the
whole wiping motion into the setting point’s motion and the
wiping pattern is to make wiping more flexible and adaptable.
The combination of different setting point’s movements and
wiping patterns meets requirements of different wiping tasks.

As mentioned before, CC-DMP is a good framework to
realize a leader-follower system, where the follower’s local
movement is learned without considering its possible global
movement, which is decided by the leader’s movement. For
example, the wiping pattern generator does not need to know
the target surface’s movement in the wiping system. A great
benefit of this set-up is that the direction of the coupling term,
in which pressure must be added on the surface is unchanged
in the local coordinate system, even when the target surface is
rotated during wiping. Once a wiping system is constructed,
any wiping pattern and wiping path can be chosen to generate
different wiping motion, which also adapts to the target
surface’s movement on the fly (see Fig. [2).

B. Learning Wiping Motion

A wiping movement is chosen from the KIT motion
database [1] (see Fig [I). We extract discrete anchor point’s
movement and periodic wiping pattern separately [10]. The
periodic wiping pattern is used later to generate a new
wiping motion. Note that our interest does not focus on
the reproduction of the original movement, because it can
be done by just learning a discrete DMP, however, it is
difficult to generalize. An approximated reproduction of the
original movements requires the amplitude profile, because
the human demonstration does not follow exactly the same
periodic pattern [10].



Fig. 3: The wiping pattern is adapted to the horizontal
inclined plane with target contact force 5 units. The cor-
responding diagram is shown in Fig. []
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Fig. 4: The diagrams are generated in the force adaptation
experiment (see Fig. B). The top diagram shows the force
magnitude from the force sensor. The red dotted line rep-
resents the end of one period. The coupling term which
is given by the force controller |6| and shown in the bottom
diagram tries to realize the force adaptation.

C. Learning External Force Term

The other difficulty of a complete wiping system is how to
generate pressure on the target surface. Because it is assumed
that there is no wiping surface model, it is difficult to directly
generate a wiping movement attaching to the surface. In this
paper, instead of creating a new DMP for z-direction like
in [16], the coupling term is learned directly with respect
to the local position of the contact points. And with the
CC-DMP formulation, the wiping movement with pressure
on the surface is automatically adapted to the rotation or
displacement of the wiping surface, which is not possible
while using the process described in [16].

In order to use the Eq.[6] the derivative of the force sensor
signal is required. It is not difficult to just keep the old
value for a position and calculate the difference between the
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Fig. 5: One period of force adaptation experiment (see Fig. 3)
is extracted. The above diagram shows the result force value
while the bottom one shows the coupling term given by the
proposed force controller.

new signal and the old one. However, it is not guaranteed
that the same contact point is revisited. One solution is
to use a two-dimensional Radial Basis Interpolator learned
by locally weighted learning strategy, thus, the force value
of an unvisited contact point is interpolated based on its
neighbourhood.

In our experiment, we use an inclined plane for force
adaptation demonstration in order to make the diagram of
the force values intuitive. However, using CC-DMP, we have
a simple way to adapt the wiping movement to the inclined
plane. We can train CC-DMP and orientation relationship
DMP on the original plane firstly and rotate the plane
before the execution. It is simply noticed that not only
the follower’s position (CC-DMP) but also its orientation
(orientation relationship DMP) are automatically adjusted.

In Fig. B] a force adaptation process is shown. The
diagrams (see Fig. f) show the force value and the cor-
responding required coupling term given by the designed
force controller. The bottom diagram in Fig. [5] shows that
the coupling term drops in the first half period, because the
robot’s arm is wiping the higher part of the plane. In the
second half period, the coupling term raises back because of
the smaller force value detected in the above diagram.

After learning the force adaptation coupling term, the
robot can immediately adapt to the same inclined surface
with the required force.

D. Results

The presented wiping system guarantees that the wiping
movement is adapted to the online movement of the target



Fig. 6: The wiping pattern is adapted to the vertical inclined
plane. After a simple goal parameter adjustment, CC-DMP
enables the robot to execute the same wiping movement (see
Fig. ) on the vertical plane. The similar force adaptation
process is executed by the robot.

surface, while the external force term C is learned for
relatively static local environment. The combination of these
two techniques enables us to create a complete force-based
wiping system.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an extension of our CC-
DMP formulation by introducing a coupling term into the
formulation. The combination of the CC-DMP and coupling
term does not only capture the comprehensive variations of
interaction actions but also enables the adaptation to specific
local environment which can only be captured based on
sensorimotor information from the execution of interaction
tasks. The resulting action representation can be used to
learn a wide range of different actions such as wiping as
it has been demonstrated in this paper. In the future, we will
extend this work and show how our approach generalizes
to other interaction tasks, such as hand-over or bi-manual
manipulation. Regarding the leader-follower system, one
problem remains unsolved, namely how to decide which
agent is the leader and which is the follower, which is usually
provided by a high-level decision-making framework.
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