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Abstract— Representing robot skills as movement primitives
that can be learned from human demonstration and adapted
to new tasks and situations is a promising approach towards
intuitive robot programming. To allow such adaptation, a
mapping between task parameters and movement primitives
parameters is needed, and different approaches have been
proposed in the literature to learn such a mapping. In human
demonstrations, however, multiple modes and models exist,
which should be taken into account when learning these
mappings and generalized movement primitive representations.
Here, a challenging problem is mode or model collapse. In order
to solve this problem, we propose using a Mixture Density
Network (MDN) that takes task parameters as input and
provides a Gaussian Mixture Model (GMM) of the movement
primitive parameters. To avoid mode and model collapse during
MDN training, we introduce an entropy cost to achieve a
more balanced association of demonstrations to GMM mixture
components. Since it is often easier to collect failed examples
by using an underfitted MDN model instead of additional
human demonstrations, we introduce a failure cost to reduce
the occurrence of failures in future executions. We evaluated
our approach in simulation and real robot experiments and
showed that the method outperforms previous approaches.

I. INTRODUCTION

Over the past decades, robotic researchers have developed
different approaches, which enable robots to learn from
humans, imitate human behavior, and autonomously improve
their movements. As a replacement for manual robot pro-
gramming, learning from human demonstrations, also called
imitation learning, has been proven a promising and power-
ful technique for intuitive robot programming [1]. Inspired
by neuro-psychological finding [2], we use movement prim-
itives (MP) as essential building blocks for describing robot
motions. In this context, the question of how a generalizable
and compact representation of movement primitives can be
learned from demonstrations and adapted to new situations
and changing task parameters is an active research area in
robotics. Different movement primitive representations have
been proposed such as Dynamic Movement Primitive (DMP)
([3]), Probabilistic Movement Primitive (ProMP) ([4]) and
Task-Parameterized Gaussian Mixture Model (TP-GMM)
([5]). These representations can adapt to task parameters in
the space in which we define these primitives. For example,
DMP adapts to a new start or goal, and ProMP adapts
to intermediate via-points. TP-GMM adapts to changes of
predefined local frames, where we describe the demonstrated
trajectories. However, for different tasks, the task parameters
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Fig. 1: Solving the mode and model collapse problem in the
obstacle avoidance problem using the entropy Mixture Den-
sity Networks. The dashed curves denote the demonstrations.
The solid curves denote the generated trajectories.

could have different meanings and are not directly associated
with spatial or temporal requirements for motion trajectories.
For example, a robot throwing a ball to a target specified
in the Cartesian space by executing a motion learned and
represented in the robot’s joint space should be able to adapt
the learned motion to new targets. None of these approaches
above can adapt a learned movement primitive to new targets
specified in a different space.

For such generalization problems, methods have been
proposed which learn a task-specific mapping between task
and movement primitive parameters using regression models
such as Locally Weighted Regression ([6], [7]), Gaussian
Process Regression ([8]) or Deep Neural Networks ([9])

However, such methods cannot deal with the problem
of mode and model collapse. Given the task of reaching
a target while avoiding an obstacle (see Figure 1), the
goal can be reached using two different modes, i.e., by
trajectories passing the obstacle from the left or the right.
Thus, learning a movement primitive for such a task should
take multiple modes in human demonstrations into account
to increase the diversity of motions, which is beneficial in
the case of changing task constraints. Even though there are
no multiple modes for each single task parameter query in



human demonstrations, there might exist multiple models for
different types of task parameters. As shown in Figure 1
(right column), the goals on the left and right sides of the
obstacle are reached separately by two types of trajectories
resulting from two different models to allow passing the
obstacle from the left or the right.

In many applications, human demonstrations might use
multiple modes and models at the same time. To avoid both
mode and model collapses, we propose to learn a mapping
from the task parameter query qqq to a Gaussian Mixture Model
(GMM) of the movement primitive (MP) parameters www with
Mixture Density Networks (MDN). Each mixture component
of the GMM represents either a mode for one specific task
parameter query or a model for multiple task parameter
queries. However, training MDN with only the Negative-
Log-Likelihood (NLL) cost, as usually done in the original
MDN, might still lead to mode and model collapses, espe-
cially when the set of demonstrations is relatively small as
shown in Figure 1. In order to further reduce the occurrence
of both collapses, we introduce an entropy cost function for
training MDN (entropy MDN).

The left column of Figure 1 shows the human demon-
strations (dashed curves) for the obstacle avoidance with
an imbalanced distribution of examples associated with the
two different modes, as well as the results obtained with
different approaches for a new task parameter query (the
green dot). As can be seen, our approach (entropy MDN)
generates multiple solutions (here: 5 solutions in Figure 1)
that cover both demonstration modes (blue and green) for
the same task parameter query. We achieve this result with
the entropy cost function that ensures a more balanced
probability associated with the different modes. The original
MDN generates multiple solutions, but these solutions (also
5) reflect only one mode in the human demonstrations since
it associates a high probability for the dominant mode.
GPR generates only one single solution that is close to the
examples for the dominant mode.

The right column of Figure 1 shows the demonstrations
(blue and green dashed curves) associated with two dif-
ferent models and the trajectories generated by different
approaches (solid curves) for several task parameter queries
(the colorized dots). As shown in the right bottom figure, our
approach (entropy MDN) successfully learns the two models
and generates the solution for the task parameter query
correspondingly. We achieve this result also with the entropy
cost function that ensures that each model is associated with
some human demonstrations. The original MDN has a higher
chance of being stuck in the local minima of the NLL, where
only one model is trained and overfitted for all task parameter
queries. This fact leads to the failure of the task execution,
i.e., the collision of the obstacle, especially when the task
parameter queries are on the boundary of two models. GPR
can only learn one model; thus, it suffers the same problem
as the original MDN.

For many tasks, it is often easier to collect failed samples
with an underfitted MDN model instead of requesting addi-
tional human demonstrations. In order to further improve the

MDN performance, we introduce a failure cost function that
reduces the occurrence of the same failures for a given task
parameter query.

II. RELATED WORKS

Dynamic Movement Primitive (DMP) is one of the popular
approaches to represent robot motions. A DMP consists of
a damped spring system and a non-linear force term f(x)
such that

τ v̇ = K(g − y)−Dv + (g − y0)f(x)x,
τ ẏ = v,

f(x) =
∑N

i=1ψψψi(x)wwwi∑N
i=1ψψψi(x)

.
(1)

where v, y are the scaled velocity and position of the
trajectory point. g, y0, τ , as the hyper-parameters, represent
goal, start and temporal factor separately. x is the canonical
variable which goes from 1 to 0. The force term f(x) is a
linear regression model with N squared exponential kernels
(SEKs) ψψψi(x) = exp(−hi(x − ci)2), where hi, ci are fixed
constants. www = (www1, ...,wwwN )T is a vector representing the
DMP parameters. DMP generalization means replacing www
with a parameterized function ω(qqq). As mentioned before,
this function can be represented and learned with different
approaches such as Gaussian Process Regression (GPR)
([8]), Locally Weighted Regression (LWR) ([6], [7]), Support
Vector Regression (SVR) ([10]) or Deep Neural Networks
([9]). To train those models, the training dataset is collected
as M pairs of task parameter queries and MP parameters
{(qqqi,wwwi)}Mi=1, where the i-th MP parameter wwwi is learned
from the i-th demonstration and corresponding to the i-th
task parameter qqqi.

Those methods require two parameterized functions f(x)
and ω(qqq). The output of the ω(qqq) is the parameter www of the
f(x). Hence, they are called two-steps methods. In [11], the
authors proposed to combine two functions to one single
function f(x,qqq), which was learned with LWR or GPR and
extended to GMM in [12]. Since these methods use only one
single function, they are called one-step methods, which are
more compact than the two-steps methods.

The idea of Task-Parameterized Gaussian Mixture Model
(TP-GMM), suggested in [5], is to observe human demon-
strations from multiple perspectives (local frames). A global
GMM represents the trajectory points in a global frame and
maximizes the likelihood of demonstrations from different
perspectives. With the transformation of the local frames, TP-
GMM achieves a better extrapolation performance than other
methods. In [13], the authors extended TP-GMM and learned
the sensory data together with the motion trajectories. As
mentioned before, however, the task parameters considered
by TP-GMM are limited.

Probabilistic Movement Primitive (ProMP) uses a linear
regression model with kernel functions ψψψ(·) to directly
represent the motion trajectory y(x) = ψψψ(x)Twww. In [4],
the authors assumed that www follows a Gaussian distribution.
In [14], the Gaussian distribution was extended to a GMM.
For human-robot interactions, the ProMP parameter (www =
{wwwo,wwwc}) is separated to encode both human (wwwo) and robot



Fig. 2: Comparison of ProMPs and VMPs: The dashed
curves are demonstrations, and the solid curves are generated
trajectories for different goals. The red circles indicate the
starts and goals missed by ProMP.

motions (wwwc). With the conditional probability, the robot MP
parameter wwwc is inferred based on the human MP parameter
wwwo. Both methods in [13] and [14] learn a generative model
and use the conditional probability to infer the unknown
variables based on the known ones.

In this paper, we use Via-points Movement Primitive
(VMP), a movement primitive formulation presented in our
previous work in [15] and described in subsection III-A.
Instead of learning a generative model, we learn an MDN
to directly map from a task parameter qqq to a GMM of the
MP parameters www. As GPR or SVR for DMP, our method
belongs to the two-steps methods.

III. MOVEMENT PRIMITIVE GENERALIZATION

A. Via-points Movement Primitive

We use Via-points Movement Primitive (VMP) (see [15])
to represent robot motions. VMP consists of an elementary
trajectory h and a shape modulation f as follows:

y(x) = h(x) + f(x) = g + x(y0 − g) +ψψψ(x)Twww, (2)

where x is the canonical variable, which goes from 1 to
0 with a linear decay canonical system. The elementary
trajectory takes the form of a polynomial. Here, it is a first-
oder polynomial, i.e. a line connecting the start and the goal.
By changing the y0, g, as the hyper-parameters, VMP adapts
to the new start and goal. As the non-linear force term in
DMP, the shape modulation is a linear regression model with
the SEKs ψψψ. www is the parameter vector of VMP.

In [15], we assume that the parameter www ∼ N (µµµ,ΣΣΣ)
follows a Gaussian distribution and the Maximum Likelihood
Estimation (MLE) of µµµ is the empirical mean of all wwws, each
of which is corresponding to one demonstration and obtained
by solving a least square problem.

Here, we extend the Gaussian distribution to a GMM and
consider task parameter queries qqq as inputs:

www = ω(qqq) ∼
K∏
k=1

N (µµµk(qqq),ΣΣΣk(qqq))zk , (3)

where zk is an element of a K-dimensional binary variable
zzz = (z1, z2, ..., zK)T where only one particular element is
equal to 1 and all other elements are zero. The probability
of the k-th element of zzz being equal to 1 is

p(zk = 1) = πk(qqq).

The probability of the result www given the task parameter qqq is

p(www|qqq) =

K∑
k=1

πk(qqq)N (www|µµµk(qqq),ΣΣΣk(qqq)) (4)

We assume that the number of the mixture components K
of the GMM is known. And {πk(.),µµµk(.),ΣΣΣk(.)}Kk=1 are the
functions to be learned.

The advantage of VMP over DMP is its ability to adapt to
intermediate via-points by modifying the elementary trajec-
tory h(x) (see [15]). Apart from the via-points adaptation,
extending force term in a DMP to a GMM makes VMPs
and DMPs exchangeable. Since ProMP lacks the elementary
trajectory and has no hyperparameters y0, g, the ProMP
parameter function www = ω(qqq) determines both the motion
trajectory shape and its start and goal. In many tasks, the start
and goal are a part of the task parameter queries. With VMP,
we reduce the learning complexity, because one requirement
of the task, i.e., reaching a new goal, is directly satisfied
with the hyperparameter g. For example, in Figure 2, in
contrast to VMP, not all the trajectories generated by ProMP
reach the goal if we use the entropy MDN and select the
most probable parameter www from the output distribution.
In some tasks, however, the goal is not a part of the task
parameters and is necessary for the task execution. For these
tasks, VMP requires learning an additional mapping from
the task parameters to the goals, while ProMP provides a
more compact solution. As shown in Figure 2, the entropy
MDN suggested for the VMP generalization also works for
the ProMP generalization.

In general, for MP generalization, M human demonstra-
tions for different task parameter queries are collected. The
purpose is to learn an MDN (ω(·)) mapping from the task
parameter query qqq to the parameter distribution of the MP
parameter www. For MDN, we have an assumption that the
number of the mixture components K of the output GMM
is known.

B. Mixture Density Network

Using neural networks to learn the functions in Equation 4
results in a Mixture Density Network (MDN) (see [16]). The
mixing coefficients πk(·), the mean µµµ(·) and the covariance
ΣΣΣ(·) are represented by the network branches as shown in
Figure 3. These network branches share a common network
part (blue box in Figure 3), which allows extracting common
latent features.

For the covariance output, we assume that it is a diagonal
matrix ΣΣΣ. According to [17], a GMM with a diagonal
variance matrix approximates any given density function to
arbitrary accuracy. The diagonal covariance output has the
same dimension as the mean output. For K components,
MDN has K pairs of mean and variance outputs. Each pair
corresponds to a mixture component of a GMM.

The dimension of the MP parameters, as the output of
MDN, determines the accuracy of the trajectory represen-
tation. With more SEKs, the MP represents the motion in
a more accurate way. In the following experiments, we use



Fig. 3: The Mixture Density Network is proposed for the
movement primitive generalization. As an example, with the
target as the task parameter indicated by the red circle,
the system generates a movement primitive parameter corre-
sponding to a motion throwing the ball (see the red curves)
on the target.

10 SEKs for each dimension. As an example, the output
mean vector has 30 dimensions for a 3-dimensional motion
trajectory, and there are total K +K × 30× 2 values in the
MDN output.

For one single demonstration, we calculate www by solving
the least square problem for Equation 2. With M demonstra-
tions, a training dataset {(qqqi,wwwi)}Mi=1 is collected. The NLL
is written as

lNLL(ΘΘΘ) =−
M∑
i=1

log

( K∑
k=1

πk(qqqi;ΘΘΘ)

N
(
wwwi|µµµ(qqqi;ΘΘΘ),ΣΣΣ(qqqi;ΘΘΘ)

))
,

(5)

where ΘΘΘ is the parameters of the network and

N (wwwi;µµµi,ΣΣΣi) =
1

(2π)d/2|ΣΣΣi|1/2
·

exp

−1

2

d∑
j=1

(wi,j − µi,j)2

σ2
i,j

 ,

(6)

where d is the dimension of the output, µµµi = µµµ(qqqi;ΘΘΘ) and
ΣΣΣi = ΣΣΣ(qqqi;ΘΘΘ). A stochastic gradient descent method is used
to minimize the NLL.

According to the previous works ([18], [19]), training
MDN with the NLL suffers the mode collapse. In [18], to
avoid the mode collapse and reduce the learning complexity,
the authors suggested to fix the mean and variance on a
grid defined in the output space, and only train the model
that outputs the mixing coefficients to reduce the NLL. If
there are enough components regularly distributed in the

output space, fixed means and variances do not reduce the
representation capability. However, for large dimensional
outputs such as MP parameters, this method leads to a
sizeable intractable grid.

In [19], the authors used MDN to predict the distribution
of future car positions based on the current car position. In
order to avoid the mode collapse, they separated the MDN
into two parts: a sampling and an inference network. The
sampling network takes the current car position as input and
outputs a fixed number of hypotheses for future car positions.
They train the sampling network to place hypotheses to
cover all the observed outputs diversely. Based on these
hypotheses, an inference network infers the parameters of
the GMM. The MDN is a combination of the sampling
and inference networks. The proposed method avoids the
mode collapse for the car positions prediction. However,
for a high dimensional output such as MP parameters, the
sampling network requires a large output dimension. Hence,
it is difficult to apply both methods to our problem.

C. Entropy Costs for MDN

Before introducing the entropy cost function, we first
inspect the reasons why mode and model collapses occur
when learning MDN from demonstrations.

The mode collapse occurs when the demonstrations asso-
ciated with different modes for one task parameter query
are very imbalanced. As an example, in Figure 1 (left
column), only a small number of demonstrations take the
path from the right side. By maximizing the likelihood of
all demonstrations, MDN tends to output a small mixing
coefficient for the mixture component, which corresponds to
the mode with less associated training data. In theory, it is
correct to associate a small probability to the event that rarely
happens in the observations. However, the reasons for the
imbalance of the demonstrations in different modes, such as
the habit of the demonstrator, can be meaningless for correct
motion generation. It is often the case that we cannot collect
enough demonstrations to cover all modes. Even if there are
only a few demonstrations, where the human accomplishes
the task with a particular type of motions, the robot should
learn these motions to increase motion diversity.

The model collapse occurs when there are only a relatively
small number of demonstrations. Several mixture compo-
nents of MDN, which are represented by neural networks, are
powerful enough to overfit all demonstrations. After training
of the MDN, instead of all K mixture components, it uses
only a subset of them, which corresponds to the local minima
of the NLL and results in poor performance of the MDN for
some task parameter queries. As shown in Figure 1 (right
column), one of the two models disappears with the original
MDN, and MDN performs similar to GPR. Compared to the
mode collapse, the model collapse is more severe because it
can lead to the failure of the task execution.

In order to reduce the occurrence of the mode and model
collapses, we introduce the negative model entropy cost



function as follows:

lmodel(ΘΘΘ) =

K∑
k=1

p(m = k|DDD;ΘΘΘ) log p(m = k|DDD;ΘΘΘ), (7)

where

p(m = k|DDD;ΘΘΘ) =

M∑
i=1

πk(qqqi;ΘΘΘ)p(qqqi), (8)

and m is the component index and p(qqqi) ∝ M−1. By
minimizing the cost, we increase the uncertainty of the
model labels when considering all demonstrations DDD. A high
uncertainty of the model labels is equivalent to either equally
distributed mixing coefficients for each task parameter query
or equally distributed demonstrations to different models. In
the former case, if all mixing coefficients for one specific
task parameter query are almost equal and close to 1/K,
each mode has the same probability of being selected to
generate motions. Hence, the mode collapse does not occur.
In the latter case, if each model is associated with some
demonstrations, the corresponding mixture component, i.e.,
the network branch, is well trained. Hence, the model col-
lapse does not occur.

The objective function for training the entropy MDN is
a weighted sum of the NLL and the entropy cost func-
tion: wNLLlNLL + wmodellmodel. In the following exper-
iments, the weights are empirically determined: wNLL =
1, wmodel = 50.

D. Improve MDN with Failures
In many applications, the failed samples are easily col-

lected with an underfitted MDN model. To reduce the
occurrence of these failed MP parameters for similar task
parameter queries, we introduce the failure cost function as
follows:

lneg(ΘΘΘ) =

M∗∑
i=1

log

( K∑
k=1

πk(qqqi;ΘΘΘ)N
(
www∗
i |µµµi,ΣΣΣneg

))
, (9)

where the normal distribution has the same form as Equa-
tion 6 but ΣΣΣneg = σnegIII . By minimizing this cost, the output
mean vector µµµi for a specific task parameter qqqi is kept away
from the failed MP parameters {www∗

i }M
∗

i=1.
If σneg is too small, the failure cost will not affect the

results. On the other hand, a too big σneg can result in
trajectories, which are significantly different from demon-
strations. Here, we determined σneg empirically with the
smallest variance of all MP parameter components.

For training an MDN with the failure cost, we prepare an
evaluation dataset. After a certain number of training steps,
we run the MDN on this evaluation dataset and collect the
failed samples in a failures dataset {www∗

i }M
∗

i=1. In the next
training steps, we calculate the failure cost function based on
the failures dataset. In order not to increase the computational
cost, we use a fixed dataset size M∗ and remove the earliest
failed samples from it when new samples are collected.

For the evaluation of the MP generalization methods, we
check whether the generated MPs accomplish the tasks with
different task parameters.

In the learning from demonstrations, a successful task
execution means that the generated motions are similar to
the demonstrations and can accomplish the task with specific
task parameters. In the proposed method, we meet the above
requirement by training MDN with the NLL, which is related
to the similarity between the collected and generated MP
parameters. To check whether the trained model meets the
latter requirement, we evaluate it with the success rate of the
task execution.

For the task execution, we can only execute one motion
after another. Hence, the MP parameter for the task must
be determined based on the MDN output distribution in a
subsequent step.

E. Generating Motions with MDN

The purpose is to generate single motions for some task
parameter queries. In the following experiments, we consider
two strategies: selecting the most probable mode or selecting
the best one from multiple samples.

The most probable mode is the output mean vector of
the mixture component that has the most significant mixing
coefficient. If the Gaussian components of the output GMM
have separated means, the most probable mode corresponds
to the mode of GMM.

For one specific task parameter query qqq, MDN outputs K
Gaussian mixture components with their mixing coefficients
{πk}Kk=1. The K modes of these Gaussian mixture compo-
nents correspond to K most probable motions of different
types. However, not all these K modes can accomplish the
task. The most significant mixing coefficient indicates the
mode that most likely succeeds. With this strategy, the MDN
serves as a deterministic model. Hence, we can compare
it with previous deterministic methods. Selecting the most
probable mode is the simplest way to generate motion from
the MDN output. Moreover, this strategy works quite well
in many tasks.

However, with the most probable mode, we ignore the
information provided by the output variance ΣΣΣ of the MDN.
Each of its diagonal elements indicates how various the
generated trajectories can be at the corresponding time for
successful task execution. When we draw samples from the
output GMM for a specific task parameter query, the variance
matrix ensures that the samples have a high probability
of success. In some tasks, the most probable mode does
not work very well, such as in the experiment described
in subsection IV-C. To improve the performance, we draw
several MP parameters from the output distribution and
execute one after another for the task until success. In this
case, the success rate is also dependent on the number of
samples.

Moreover, with the former strategy, the MDN always
generates the same motion for one specific task parameter
query. In order to demonstrate motion diversity and the
fact that the MDN learns the multiple modes, we also
need to draw multiple samples from the output distribution
(see subsection IV-D).



Fig. 4: The models are learned to fit a 5-th order polynomial.
Top: the results for learning a mapping from a part of
the coefficients to the MP parameters. Bottom: the results
for learning a mapping from all coefficients to the MP
parameters.

In the next section, we evaluate the proposed method with
four experiments. In the first two experiments, we selected
the most probable mode and compared our method with pre-
vious deterministic methods. In the other two experiments,
we draw multiple samples from the MDN output to either
improve the performance or show the motion diversity.

IV. EXPERIMENTS AND EVALUATIONS

A. Fitting Polynomials

In this experiment, we consider a 5-th order polynomial
y(x) =

∑5
k=1 akx

k. The purpose is to learn a mapping from
the coefficients ak to the MP parameter www in Equation 2. The
error is the distance between the true 5-th order polynomials
and the generated trajectories by the output VMP parameters.
We evaluate different methods separately for the inputs
with one dimension a5 to all dimensions (a5, a4, ..., a0)T .
Figure 4 shows the results for 60 experiments. In each
experiment, 30 random coefficients are for training and 20
for testing.

One-step approaches presented in [11] with SVR and GPR
are denoted as ”-1” while two-steps methods are indicated
with ”-2”. The symbol ”dp” for GPR refers to the dot product
kernel and ”se” for the squared exponential kernel. Notice
that the dot product kernel is the perfect assumption for this
task because the polynomial value is indeed a dot product
of the coefficients and bases. However, GPR-1 with dot
product kernels is worse than other methods when learning
the mapping from (a5, a4)T to www. This result is because
the time-dependent variable x is a part of the input, which
loses the advantage of the correct dot product assumption.
In contrast, the two-steps method GPR-2 with dot product

Fig. 5: Comparison between the original MDN and the
entropy MDN. Top: the result with 100 demonstrations.
Bottom: the result with 300 demonstrations.

kernels perfectly reproduces the polynomial. On the other
hand, however, SVR-1 performs better than SVR-2.

For MDN, we select the most probable VMP parameter
as the output. Except for the GPR with dot product kernels,
MDN outperforms all other methods.

B. Random Obstacles Avoidance

To show whether the methods can scale to a more complex
task than the one shown in Figure 1, we placed three obsta-
cles randomly in the 2D space and asked for the collision-
free trajectories with random starts and goals. To collect
demonstrations, a person drew curves connecting random
starts and goals without collisions with three randomly
generated 2D balls on a tablet. Without any instructions, the
human demonstrations show multiple modes and models.

The success of the task execution requires that the gen-
erated trajectory connects the start and goal without any
collision with randomly placed obstacles.

Due to the task complexity and existence of the multiple
modes and models, previous approaches cannot achieve
acceptable results. With a 100 dataset, TP-GMM has only
a success rate of about 45% with five local frames (three for
the obstacles, two for the start and the goal). Both one-step
and two-steps methods with SVR and GPR perform worse
with a success rate that is less than 30%.

For MDN, we assume three mixture components K = 3.
To extract the latent feature (see the blue box in Figure 3), we
introduce three separate network branches for three obstacles.
Each branch takes the position of one obstacle, the start
and the goal of the trajectory as the input and outputs a



Fig. 6: Three obstacles are randomly placed in the 2D space.
The solid colorized curves are corresponding to the most
probable mode. The dashed curves are generated by the
two other modes which are not selected by MDN.

hidden feature vector. The three hidden feature vectors are
then concatenated for the rest part of the MDN. The whole
MDN is trained in an end-to-end manner.

During the testing, we select the most probable mode
as mentioned before. For each number of training data, 30
experiments are conducted for 30 different training datasets
randomly chosen from the collected demonstrations. In order
to utilize the failure cost function, after each 100 training
steps, the MDN is evaluated on an evaluation dataset to
produce failed samples. To avoid increasing data, we only
consider the recent 3000 failed samples.

As shown in Figure 5, with 100 demonstrations, the
MDN with both the entropy and failure cost functions
(lNLL + lmodel + lneg) achieves around 82% success rate.
The performance is improved further to 85% with 300
demonstrations. With 100 demonstrations, the entropy MDN
with the failure cost function (lNLL+ lmodel+ lneg) achieves
the best result and the entropy MDN (lNLL+lmodel) is better
than the original MDN (lNLL). Their difference is decreasing
with the increasing number of demonstrations.

In Figure 6, 16 testing samples are shown. The colorized
solid curves are generated by the most probable mode (MP
parameter) given by the MDN, and the transparent dashed
curves correspond to the other two modes, which are not
selected by the MDN with relatively small output mixing
coefficients. Three different colors indicate three different
colors: The green curves bend towards the top; The red
curves bend towards the bottom; The blue curves connect
the start and the goal directly. As can be seen, the MDN
accomplishes the task with two steps. One step is to sepa-
rately update each mixture component branch to increase the
success rate of their modes. The other step is to adjust the
mixing coefficients output to select the mode, which has the
highest chance of accomplishing the task.

Fig. 7: In the hit ball experiment, the desired final ball
location is the input of the MDN, which is denoted by a
transparent box. Top: the robot hits the ball from its right
side, and the ball bounces off the border and stops at the
target. Bottom: the robot hits the ball directly towards the
target.

Fig. 8: The result of the hit ball experiment shows that the
MDN (red) outperforms the baseline (gray), GPR±Σ (blue)
and SVR±Σ (green)

C. Hit Ball Experiment in MuJoCo

In this experiment, the robot hits the ball with its fist.
After being hit, the ball slides on the table and stops at
some locations. The final location of the ball on the table
is the task parameter query. The purpose is to generate an
appropriate robot motion to hit the ball and let the ball stop
at a specific location. We conducted this experiment in the
MuJoCo simulator ([20]) with the model of the humanoid
robot ARMAR-6 ([21]).

For the demonstrations, we use a random trajectory gen-
erator based on a 5-th order polynomial, with which the
position and velocity at the end of the trajectory can be
specified. The initial ball location on the table is fixed.
The end velocities of the trajectories are randomly sampled
from a uniform distribution. With different hitting velocities,



Fig. 9: Top-left: Four DoFs are used for throwing the ball. Top-right: the robot throws the ball directly to the target. Bottom:
the robot bounce the ball to the target off the wall.

the ball stops at different locations. We collected the final
locations of the ball qqq and the MP parameters www in a training
dataset.

As shown in Figure 7, the ball can bounce off the borders
of the table, which realizes multiple modes for one specific
target location in the collected demonstrations. The table is
260 cm×200 cm big and the ball has radius 5 cm. Successful
task execution means that the ball is no more than 10 cm far
from the target location.

We use K = 3 mixture components and train the MDN
with 50 random demonstrations and test it on 100 new ball
locations. If selecting the most probable mode, we get an
average success rate around 15%. This poor performance
might be because the task requires an accurate trajectory.
With a randomly small perturbation of the MP parameters
that correspond to the original 50 demonstrations, the success
rate can drop rapidly. As mentioned before, to improve the
task performance, we draw several samples from the output
distribution. In this case, a successful MP generalization
means that there exists at least one of these samples that
leads to successful task execution. As shown in Figure 8,
increasing the number of samples improves the success rate.

In this specific task, the number of samples helps because
of two reasons. One trivial reason is the setup of the task,
which allows successful task executions by chance: VMP
guarantees that the robot hits the ball, and the table borders
limit the final ball locations. The other reason is that the
MDN learns the correct distribution, which gives a high
probability to the correct MP parameter, which is unfortu-
nately not precisely the mode. Sampling from the correct
distribution has a more chance of finding the correct solution
than directly selecting the most probable mode. In order to
prove that the latter reason exists with MDN for this task,
we consider a uniform distribution of the MP parameters as

the baseline, whose interval is determined by the minimal
and maximal components of the MP parameters, which
correspond to the 50 demonstrations. Besides the baseline,
we construct the Gaussian distributions by considering the
GPR and SVR outputs as mean vectors and with a fixed
variance matrix (Σ = 0.01III).

As shown in Figure 8, MDN outperforms others for all
the sample numbers. For the baseline, it coincides with
the intuition that its success rate is almost proportional
to the sample number because it does not learn from the
demonstrations. GPR and SVR have better performances
than the baseline because they draw the samples close to their
output MP parameters. However, the samples drawn around
their outputs are totally by chance because of the fixed
variance matrix. In contrast, the MDN learns a relatively
correct distribution output. Hence, it already achieves a high
success rate with a smaller sample number.

D. Throw Ball Experiment

To further evaluate our methods, we let the humanoid
robot ARMAR-6 throw a ball on a specific target. The arms
of ARMAR-6 have eight degrees of freedom (DoF) each.
In order to simplify the task, we used only four of them
without loss of generality (see the four DoFs in Figure 9).
The demonstrations were conducted by the human using
kinesthetic teaching. After learning the corresponding MP
parameter for each demonstration, we speed up the motion
to 1 second and set a fixed joint goal. The robot hand always
opens at 0.55 second. Then we record the location of the ball
when it drops on the ground. By fixing the goals and speed
of the motions, these hit ground locations are only dependent
on the shapes of the joint trajectories. In the experiment, we
let the robot face the wall, and the robot can bounce the ball
off the wall to the target.



We let the robot throw 50 times with different human
demonstrations and randomly split the collected data into 30
for training and 20 for testing. We train an MDN (K = 2)
on 30 demonstrations. For the testing, we only use the hit
ground locations of the other 20 demonstrations as task
parameter queries, which guarantees that all the hit ground
locations are reachable. During the testing, we place a plate
on the ground to indicate the current query. Successful task
execution is to throw the ball on the plate either directly
or by bouncing it off the wall. In the experiment, with 10
samples, the robot missed only 2 out of 20 target hit ground
locations. In Figure 9, for one specific task parameter query,
we show how 2 of 10 MP parameters, which correspond to
two different modes, result in different paths of the ball.

V. CONCLUSIONS AND DISCUSSIONS

The work addresses the problem of the movement prim-
itive generalization to different tasks and is concerned with
two aspects. First, in order to take the multiple modes
and models of the human demonstrations into account, we
propose to use a Mixture Density Networks (MDN) for the
mapping from the task parameter query to the MP parameter
distribution. The experiments show that the MDN based
approach outperforms previous works. Second, to further
reduce the occurrence of the mode and model collapse during
training MDN, we propose the entropy cost function. More-
over, for some tasks, we introduce the failure cost to improve
the performance of the MDN further. The comparison of
different MDNs shows that the new cost functions perform
better than the original one, especially when the set of
demonstrations is relatively small.

What we do not consider here is the extrapolation of the
method to areas outside the demonstrations range. Since
the MDN is learned fully from demonstrations, its extrap-
olation capability is limited. Current methods dealing with
the extrapolation problem focus only on a specific set of
task parameters such as TP-GMM and via-points adaptation
of VMP described in [5] or our previous work in [15].
The extrapolation of MP generalization to arbitrary task
parameter queries is still unsolved.

Recent approaches such as in [13], [14] also take the task-
relevant sensory inputs into account and learn them together
with the robot motions. For human-robot interactions, the
robot motion is generated based on the observed human
activity. With the human activity considered as a task pa-
rameter query, these methods also learn a mapping from the
task parameter to the MP parameter. However, unlike MDN,
which directly learns this mapping, these approaches learn a
generative model. In the future, we will explore the usage of
our proposed method for human-robot interaction tasks and
compare these methods.

For the sampling strategy, selecting the most probable
mode already solves many tasks. However, for some other
tasks, the suggested method needs multiple samples to
achieve better performance, such as in subsection IV-C. This
fact requires multiple robot trials for each task parameter
query. In order to solve this problem, we consider either to

use reinforcement learning to refine the mean vector given by
the trained MDN with a small number of trials as in [22] or
to train a discriminator, which can predict success or failure
based on both task and MP parameters.
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[19] O. Makansi, E. Ilg, Ö. Çiçek, and T. Brox, “Overcoming limitations
of mixture density networks: A sampling and fitting framework for
multimodal future prediction,” in IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[20] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control.” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 5026–5033.
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